浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学 北京,100049
收稿日期:2013-03-26,
修回日期:2013-05-01,
纸质出版日期:2013-06-10
移动端阅览
汪丽杰, 佟存柱, 曾玉刚, 田思聪, 吴昊, 杨海贵, 宁永强, 王立军. 高亮度布拉格反射波导激光器[J]. 发光学报, 2013,34(6): 787-791
WANG Li-jie, TONG Cun-zhu, ZENG Yu-gang, TIAN Si-cong, WU Hao, YANG Hai-gui, NING Yong-qiang, WANG Li-jun. High Brightness Bragg Reflection Waveguide Laser[J]. Chinese Journal of Luminescence, 2013,34(6): 787-791
汪丽杰, 佟存柱, 曾玉刚, 田思聪, 吴昊, 杨海贵, 宁永强, 王立军. 高亮度布拉格反射波导激光器[J]. 发光学报, 2013,34(6): 787-791 DOI: 10.3788/fgxb20133406.0787.
WANG Li-jie, TONG Cun-zhu, ZENG Yu-gang, TIAN Si-cong, WU Hao, YANG Hai-gui, NING Yong-qiang, WANG Li-jun. High Brightness Bragg Reflection Waveguide Laser[J]. Chinese Journal of Luminescence, 2013,34(6): 787-791 DOI: 10.3788/fgxb20133406.0787.
设计并制备了808 nm波长布拉格反射波导激光器
在垂直方向采用光子带隙效应进行光场限制
实现了超大光模式体积和单横模激射。所制备的10 m条宽、未镀腔面膜的器件在室温、准连续条件下的总输出功率可超过650 mW
最高功率受热扰动限制。激光器垂直方向和水平方向的远场发散角半高全宽分别为8.3和8.1
这种近圆形的光束输出可以有效地提高激光器的耦合效率。
A high brightness 808 nm edge-emitting diode laser based on the dual-sided Bragg reflection waveguide was reported. The 10 m-wide ridge lasers with uncoated facets demonstrated more than 650 mW power in quasi-continuous-wave operation
being limited by the thermal rollover of the unmounted devices. A nearly circular output beam is obtained due to the significantly expanded modal spot size. The beam divergence with full-width at half maximum was as narrow as 8.3 and 8.1 respectively in the vertical and lateral directions.
Qu Y, Yuan S, Liu C Y, et al. High-power InAlGaAs/GaAs and AlGaAs/GaAs semiconductor laser arrays emitting at 808 nm[J]. IEEE Photon. Technol. Lett., 2004, 16(2):389-391.[2] Wenzel W, Husler K, Blume G, et al. High-power 808 nm ridge-waveguide diode lasers with very small divergence, wavelength-stabilized by an external volume Bragg grating[J]. Opt. Lett.,2009, 34(11):1627-1629.[3] Hempel M, Mattina F L, Tomm J W, et al. Defect evolution during catastrophic optical damage of diode lasers[J]. Semicond. Sci. Technol.,2011, 26(7):075020-1-10.[4] Knauer A, Erbert G, Staske R, et al. High-power 808 nm lasers with a super-large optical cavity[J]. Semicond. Sci. Technol.,2005, 20(6):621-624.[5] Pietrzak A, Wenzel H, Erbert G, et al. High-power laser diodes emitting light above 1 100 nm with a small vertical divergence angle of 13[J]. Opt. Lett., 2008, 33(19):2188-2190.[6] Pietrzak A, Wenzel H, Crump P, et al. 1 060-nm ridge waveguide lasers based on extremely wide waveguides for 1.3-W continuous-wave emission into a single mode with FWHM divergence angle of 96[J]. IEEE J. Quant. Electron.,2012, 48(5):568-575.[7] Qiu B C, McDougall S D, Liu X F, et al. Design and fabrication of low beam divergence and high kink-free power lasers[J]. IEEE J. Quantum Electron., 2005, 41(9):1124-1130.[8] Malag A, Dabrowska E, Teodorczyk M, et al. Asymmetric heterostructure with reduced distance from active region to heatsink for 810-nm range high-power laser diodes[J]. IEEE J. Quant. Electron., 2012, 48(4):465-471.[9] Crump P, Pietrzak A, Bugge F, et al. 975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers[J]. Appl. Phys. Lett.,2010, 96(13):131110-1-3.[10] Pietrzak A, Crump P, Wenzel H, et al. Combination of low-index quantum barrier and super large optical cavity designs for ultranarrow vertical far-fields from high-power broad-area lasers[J]. IEEE J. Sel. Topics Quant. Electron., 2011, 17(6):1715-1722.[11] Chen Y C, Waters R G, Dalby R J. Single-quantum-well laser with 11.2 degree transverse beam divergence[J]. Electron. Lett.,1990, 26(17):1348-1350.[12] Wenzel H, Bugge F, Erbert G, et al. High-power diode lasers with small vertical beam divergence emitting at 808 nm[J]. Electron. Lett.,2001, 37(16):1024-1026.[13] Ma B, Cho S, Lee C, et al. High-power 660-nm GaInP-AlGaInP laser diodes with low vertical beam divergence angles[J]. IEEE Photon. Technol. Lett., 2005, 17(7):1375-1377.[14] Malag A, Jasik A, Teodorczyk M, et al. High-power low vertical beam divergence 800-nm-band double-barrier-SCH GaAsP-(AlGa)As laser diodes[J]. IEEE Photon. Technol. Lett.,2006, 18(15):1582-1584.[15] Hung C T, Lu T C. 830-nm AlGaAs-InGaAs graded index double barrier separate confinement heterostructures laser diodes with improved temperature and divergence characteristics[J]. IEEE J. Quant. Electron.,2013, 49(1):127-132.[16] Liang W, Xu Y, Choi J M, et al. Engineering transverse Bragg resonance waveguides for large modal volume lasers[J]. Opt. Lett.,2003, 28(21):2079-2081.[17] Zhu L, Scherer A, Yariv A. Modal gain analysis of transverse Bragg resonance waveguide lasers with and without transverse defects[J]. IEEE J. Quant. Electron.,2007, 43(10):934-940.[18] Bijilani B, Helmy A S. Bragg reflection waveguide diode lasers[J]. Opt. Lett., 2009, 34(23):3734-3736.[19] Novikov I I, Karachinsky L Y, Maximov, et al. Single mode CW operation of 658 nm AlGaInP lasers based on longitudinal photonic band gap crystal[J]. Appl. Phys. Lett., 2006, 88(23):231108-1-3.[20] Kettler T, Posilovic K, Karachinsky L Y, et al. High-brightness and ultranarrow-beam 850-nm GaAs/AlGaAs photonic band crystal lasers and single-mode arrays[J]. IEEE J. Sel. Topics Quant. Electron.,2009, 15(3):901-908..[21] Novikov I I, Gordeev N Y, Shernyakov Y M, et al. High-power single mode (>1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence[J]. Appl. Phys. Lett.,2008, 92(10):103515-1-3.[22] Posilovic K, Kalosha V P, Winterfeldt M, et al. High-power low-divergence 1 060 nm photonic crystal laser diodes based on quantum dots[J]. Electron. Lett., 2012, 48(22):1419-1420.[23] Maximov M V, Shernyakov Y M, Novikov I I, et al. High-power low-beam divergence edge-emitting semiconductor lasers with 1-and 2-D photonic bandgap crystal waveguide[J]. IEEE J. Sel. Topics Quant. Electron.,2008, 14(4):1113-1122.
0
浏览量
304
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构