浏览全部资源
扫码关注微信
1. 北京工业大学光电子技术省部共建教育部重点实验室 北京,100124
2. 中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室,江苏 苏州,215123
收稿日期:2013-03-25,
修回日期:2013-04-22,
纸质出版日期:2013-06-10
移动端阅览
邓旭光, 韩军, 邢艳辉, 汪加兴, 崔明, 陈翔, 范亚明, 朱建军, 张宝顺. H<sub>2</sub>载气流量对AlN缓冲层生长的影响[J]. 发光学报, 2013,34(6): 776-781
DENG Xu-guang, HAN Jun, XING Yan-hui, WANG Jia-xing, CUI Ming, CHEN Xiang, FAN Ya-ming, ZHU Jian-jun, ZHANG Bao-shun. Influence of H<sub>2</sub> Carrier Gas on Epitaxy of AlN Buffer Layer[J]. Chinese Journal of Luminescence, 2013,34(6): 776-781
邓旭光, 韩军, 邢艳辉, 汪加兴, 崔明, 陈翔, 范亚明, 朱建军, 张宝顺. H<sub>2</sub>载气流量对AlN缓冲层生长的影响[J]. 发光学报, 2013,34(6): 776-781 DOI: 10.3788/fgxb20133406.0776.
DENG Xu-guang, HAN Jun, XING Yan-hui, WANG Jia-xing, CUI Ming, CHEN Xiang, FAN Ya-ming, ZHU Jian-jun, ZHANG Bao-shun. Influence of H<sub>2</sub> Carrier Gas on Epitaxy of AlN Buffer Layer[J]. Chinese Journal of Luminescence, 2013,34(6): 776-781 DOI: 10.3788/fgxb20133406.0776.
在Si(111)衬底上用金属有机化学气相沉积(MOCVD)设备生长了AlN和GaN薄膜。采用高分辨X射线衍射、椭圆偏振光谱仪和原子力显微镜研究了AlN缓冲层生长时的载气(H
2
)流量变化对GaN外延层的影响。椭圆偏振仪测试表明:相同生长时间内AlN的厚度随着H
2
流量的增加而增加
即H
2
流量增加会导致AlN生长速率的提高。原子力显微镜测试表明:随着H
2
流量的增加
AlN表面粗糙度也呈上升趋势。XRD测试表明:随着AlN生长时的H
2
流量的增加
GaN的(0002)和(101 2)峰值半宽增大
即螺型穿透位错密度和刃型穿透位错密度增加。可能是由于AlN缓冲层的表面形貌较差
导致GaN的晶体质量有所下降。实验结果表明:采用较低的H
2
流量生长AlN缓冲层可以控制AlN的生长速率
在一定程度上有助于提高GaN的晶体质量。
AlN buffer and GaN epitaxial layer were prepared by MOCVD on Si(111) substrate. The effect of H
2
carrier gas flow for AlN buffer epitaxy on GaN was investigated by high resolution X-ray diffraction
ellipsometer and atomic force microscope. It is found that AlN thickness increases (
i.e
. the increasing of AlN growth rate) with the increasing of H
2
flow. The surface roughness of AlN also tends to increase. The change in surface roughness is attributed to the enhancement of island-growth mode. The increasing of AlN buffer thickness contributes to the increasing of tensile stress which promotes AlN island growth mode. The higher density of islands with bad orientation was observed by AFM on AlN buffer layer which was grown with higher H
2
flow.
scan of (0002) and (101 2) show that the increasing of H
2
flow leads to the increasing in FWHM of GaN(
i.e
. the increasing in density of screw threading dislocation and edge threading dislocation). Because the three-dimensional growth of GaN starts on the top of AlN islands
the AlN buffer layer with high density of islands contributes to rapid coalescence of GaN islands that will lead high density of edge threading dislocation. The bad orientation of AlN islands on buffer layer will lead to GaN thin film with high density of screw threading dislocation. The obtained data demonstrate that the H
2
carrier gas flow plays an important role in improving the crystal quality of GaN.
Li Y Z, Xing Y H, Han J, et al. Investigation of non-doped GaN grown on sapphire substrate[J]. Chin. J. Lumin.(发光学报), 2012, 33(10):1084-1087 (in Chinese).[2] Xing Y H, Han J, Deng J, et al.Properties of the InGaN:Mg with roughened surface and high hole concentration and its light-emitting diode application[J]. J. OptoelectronicsLaser (光电子激光), 2011, 22(5):666-668 (in Chinese).[3] Srinivasan R, Redwing J M. Growth stresses and cracking in GaN films on (111)Si grown by metal-organic chemical-vapor deposition. I. AlN buffer layers[J]. Appl. Phys. Lett., 2005, 98(2):0235141-1-3.[4] Zhang B S, Wu M, Shen X M, et al.Influence of high-temperature AIN buffer thickness on the properties of GaN grown on Si(111)[J]. J. Cryst. Growth,2003, 258(1):34-40.[5] Matoussi A, Boufaden T, Missaoui A. Porous silicon as an intermediate buffer layer for GaN growth on (100) Si[J]. Microelectron. J., 2001, 32(12):995-998.[6] Tamura M, Lpez-lpez M, Yodo T. Effects of the substrate tilting angle on the molecular beam epitaxial growth of GaAs on Si(110)[J]. J. Vac. Sci. Technol.B, 2000, 19(4):1567-1571.[7] Sanchez-Garcia M A, Ristic J, Calleja E, et al.Characterization of GaN quantum discs embedded in AlxGa1-xN nanocolumns grown by molecular beam epitaxy[J]. Phys. State Sol.A, 2002, 68(12):192-198.[8] Strittmatter A, Bimberg D, Krost A, et al.Structural investigation of GaN layers grown on Si(111) substrates using a nitridated AlAs buffer layer[J]. J. Cryst. Growth, 2000, 221(1):293-296.[9] Yang J W, Sun C J, Chen Q, et al.High quality GaN-InGaN heterostructures grown on (111) silicon substrates[J]. Appl. Phys. Lett.,1996, 69(23):3566-3568.[10] Kobayashi N P, Kobayashi J T, Dapkus P D, et al. GaN growth on Si(111) substrate using oxidized AlAs as an intermediate layer[J]. Appl. Phys. Lett., 1997, 71(24):3569-3571.[11] Watanabe A, Takeuchi T, Hirosawa K. Growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer[J]. J. Cryst. Growth,1993, 128(1):391-396.[12] Zhao D G, Zhu J J, Liu Z S, et al.Surface morphology of AlN buffer layer and its effect on GaN growth by metal organic chemical vapor deposition[J]. Appl. Phys. Lett., 2004, 85(9):1499-1501.[13] Zhao D G, Zhu J J, Jiang D S, et al.Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition[J]. J. Cryst. Growth, 2006, 289(1):72-75.[14] Theodoros G, Mihopoulos, Gupta V, et al.A reaction transpory model for AlGaN MOVPE growth[J]. J. Cryst. Growth, 1998, 195(1):733-739.[15] Lu D Q, Zhang R, Xiu X Q, et al.Influence of carrier gas flow rate on the optical propertiesof GaN films grown by HVPE[J]. Research & Progress of SSE (固体电子学研究与进展), 2002, 22(4):385-390 (in Chinese).[16] Blasing K D. Evolution of stress in GaN heteroepitaxy on AlN/Si(111): From hydrostatic compressive to biaxial tensile[J]. Appl. Phys. Lett.,2004, 85(16):3441-3443.[17] Chen Y, Wang W X, Li Y, et al. High quality GaN layers grown on SiC substrates with AlN buffers by metal organic chemical vapor deposition[J]. Chin. J. Lumin.(发光学报), 2011, 32(9):896-901 (in Chinese).
0
浏览量
85
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构