浏览全部资源
扫码关注微信
1. 郑州大学信息工程学院河南省激光与光电信息技术重点实验室,河南 郑州,450052
2. 上海航天技术研究院 上海,201109
收稿日期:2013-03-15,
修回日期:2013-05-02,
纸质出版日期:2013-06-10
移动端阅览
郝宇, 孙晓红, 孙燚, 张旭, 贾巍. 基于光栅结构的砷化镓高效率吸收层设计[J]. 发光学报, 2013,34(6): 769-775
HAO Yu, SUN Xiao-hong, SUN Yi, ZHANG Xu, JIA Wei. Grating Based Absorption Layer for Enhanced Absorption in Gallium Arsenide Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(6): 769-775
郝宇, 孙晓红, 孙燚, 张旭, 贾巍. 基于光栅结构的砷化镓高效率吸收层设计[J]. 发光学报, 2013,34(6): 769-775 DOI: 10.3788/fgxb20133406.0769.
HAO Yu, SUN Xiao-hong, SUN Yi, ZHANG Xu, JIA Wei. Grating Based Absorption Layer for Enhanced Absorption in Gallium Arsenide Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(6): 769-775 DOI: 10.3788/fgxb20133406.0769.
设计了一种具有光栅结构砷化镓吸收层的薄膜太阳能电池
利用严格耦合波方法对矩形光栅和三角形光栅结构砷化镓吸收层在300~900 nm入射波长范围内的吸收效率进行了分析。结果表明:相比于平坦吸收层
两种光栅结构在TE和TM偏振光条件下吸收效率均有提高
峰值吸收率可提高55.9%。并对矩形光栅、三角形光栅结构参数进行了优化设计
对两种光栅吸收层的角度依赖性做了分析
得出在填充比和厚度相同的情况下
正三角形光栅吸收层的角度依赖性最优。最后利用有限元法对入射光在电池吸收层的吸收增强效应进行了理论模拟
通过与平坦结构吸收层的电场分布对比
可以直观地看出入射光在光栅结构吸收层的吸收增强效应。该研究结果为制备高效率、高性能太阳能电池结构提供了参考依据。
A design is proposed to significantly increase the absorption of gallium arsenide thin-film layer. This is achieved by patterning a grating in the layer. By using rigorous coupled wave method
the absorption efficiency in the range of 300~900 nm has been analyzed for GaAs layer with rectangular and triangle gratings. The results show that the absorption efficiency of the two structures can be improved relative to the flat absorption layer and the peak absorption rate can be increased by 55.9%. And the structural parameters of the two structures have been also optimized. By analyzing the incident angular dependence of the two structures
it is concluded that solar cells with the triangular absorption layer have better characteristics in the same condition of thickness and filling factor. On the other hand
the finite element method is used to calculate the field distribution for different absorption layers. Good absorption enhancement can be observed directly from the absorption layer with gratings. The research provides a reference for the preparation of solar cell structures with high performance.
Meier J, Kroll U, Vallat-Sauvain E, et al. Amorphous solar cells,the micrograph concept and the role of VHF-GD deposition technique[J]. Solar Energy, 2004, 77(6):983-993.[2] Zhuang T J, Su Z S, Liu Y D, et al. Enhanced performance of small molecular weight organic solar cells by incorporating Ag nanoparticles[J]. Chin. J. Lumin.(发光学报),2011, 32(12):1266-1270 (in Chinese).[3] Grandidier J, Weitekamp R A, Deceglie M G, et al. Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere arrays[J]. Phys. Status Solidi A, 2013, 210(2):255-260.[4] Bermel P, Luo C, Zeng L, et al. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals[J]. Opt. Exp.,2007, 15(25):16986-17000.[5] Zeng L, Yi Y, Hong C, et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J]. Appl. Phys. Lett., 2006, 89(11):111111-1-3[6] Peters M, Goldschmidt J C. Efficiency limit and example of a photonic solar cell[J]. J. Appl. Phys.,2011, 110(4):043104-1-5.[7] Curtin B, Biswas R, Dalal V. Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells[J]. Appl. Phys. Lett.,2009, 95(23):231102-1-3.[8] Shen H J, Lu H D, Cheng X Z. Back reflectors of thin-film silicon solar cells consisting of one-dimensional diffraction gratings and one-dimensional photonic crystal[J]. Chin. J. Lumin.(发光学报),2012, 33(6):633-639 (in Chinese).[9] Zheng G G, Xian F L, Li X Y, et al. Enhancement of light absorption in thin film silicon solar cells with metallic grating and one-dimensional photonic crystals[J]. Chin. Phys. Lett.,2011, 28(5):054213-1-4.[10] Sheng X, Johnson S G. Integrated photonic structures for light trapping in thin-film Si solar cells[J]. Appl. Phys. Lett., 2012, 100(11):111110-1-3.[11] Lozano G, Colodrero S, Caulier O. Theoretical analysis of the performance of one-dimensional photonic crystal-based[J]. Phys.Chem.C, 2010, 114(8):3681-3687.[12] Prieto I, Galiana B, Postigo P A, et al. Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface[J]. Appl. Phys. Lett.,2009, 94(19):191102-1-3.[13] Gomard G, Drouard E, Letartre X, et al. Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells[J]. Appl. Phys.,2010, 108(12):123102-1-8.[14] Moharam M G, Grann E B, Pommet D A, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Opt. Soc. Am.A, 1995, 12(5):1068-1076.[15] Zhao Y, Zhao H W, Zhang X Y, et al. Research on some new mechanisms of slow light and its applications[J]. Opt. Precision Eng.(光学 精密工程), 2009, 17(2):237-245 (in Chinese).[16] Wu F B, Zhang D W. The light trapping in solar cells based on periodic nano-structures gratings[J]. Laser Journal (激光杂志),2010, 31(5):15-17 (in Chinese).[17] Li J W, Xie H L, Zhao H B. Solar Cells Operating Principles, Technology, and System Applactions [M]. Beijing: Publishing House of Electronic Industry, 1987:2-3 (in Chinese).
0
浏览量
257
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构