浏览全部资源
扫码关注微信
1. 南京邮电大学有机电子与信息显示国家重点实验室培育基地,江苏 南京,210023
2. 西安交通大学电子与信息工程学院信息光子技术省重点实验室,陕西 西安,710049
收稿日期:2013-02-24,
修回日期:2013-04-19,
纸质出版日期:2013-06-10
移动端阅览
张新稳, 吴朝新. 有机/有机界面污染对有机电致发光器件稳定性的影响[J]. 发光学报, 2013,34(6): 763-768
ZHANG Xin-wen, WU Zhao-xin. Effect of Contaminated Organic/Organic Interface on The Stability of Organic Light-emitting Devices[J]. Chinese Journal of Luminescence, 2013,34(6): 763-768
张新稳, 吴朝新. 有机/有机界面污染对有机电致发光器件稳定性的影响[J]. 发光学报, 2013,34(6): 763-768 DOI: 10.3788/fgxb20133406.0763.
ZHANG Xin-wen, WU Zhao-xin. Effect of Contaminated Organic/Organic Interface on The Stability of Organic Light-emitting Devices[J]. Chinese Journal of Luminescence, 2013,34(6): 763-768 DOI: 10.3788/fgxb20133406.0763.
有机电致发光器件的稳定性是其实用化面临的主要难题之一。为了研究有机/有机界面性质对有机电致发光器件稳定性的影响
采用溶液旋涂的NPB(NPB
SC
)作为器件的空穴传输层制备了两种异质结电致发光器件:ITO/NPB
SC
/Alq
3
/LiF/Al和ITO/NPB
SC
/NPB/Alq
3
/LiF/Al
对比研究了器件的发光性能和工作稳定性。研究结果表明:完全使用NPB
SC
作为空穴传输层的器件性能和稳定性都较差
这归因于不稳定的NPB
SC
/Alq
3
界面
在空气中旋涂制备NPB层时
空气中的水蒸气和氧气分子会粘附在空穴传输层表面
这样就会引起界面处Alq
3
分子的发光猝灭。插入10 nm真空蒸镀的NPB层可以显著地提高器件的发光性能和稳定性
10 nm的NPB层把污染界面与激子复合区界面分开
避免了水蒸气和氧气分子对Alq
3
分子的发光猝灭
器件的效率增加了1.15 cd/A
半衰期寿命提高了4倍。
Two types of organic light-emitting devices were fabricated using a spin-coated N
N'-di(naphth-1-yl)-N
N'-diphenyl-benzidine (NPB
SC
) film as hole-transport layer (HTL): ITO/NPB
SC
/Alq
3
/LiF/Al
ITO/NPB
SC
/NPB/Alq
3
/LiF/Al. The effect of air contaminated NPB
SC
/organic interface on the stability of organic light-emitting devices was investigated. It is found that the device using a NPB
SC
film as HTL exhibited the poorer stability
which is attributed to the instability of NPB
SC
/Alq
3
interface that contaminated by moisture and oxygen from the NPB
SC
layer. A vacuum-deposited NPB film (10 nm) inserted between NPB
SC
layer and Alq
3
layer can greatly improve the stability of device by blocking the recombination zone from contamination of moisture and oxygen.
Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51(12):913-915.[2] Wang Q, Ding J Q, Ma D G, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: Fabrication and emission-mechanism analysis[J]. Adv. Funct. Mater.,2009, 19(1):84-95.[3] Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244):234-238.[4] Aziz H, Popovic Z D. Degradation phenomena in small-molecule organic light-emitting devices[J]. Chem. Mater., 2004, 16(23):4522-4532.[5] Burrows P E, Bulovic V, Forrest S R, et al. Reliability and degradation of organic light-emitting devices[J]. Appl. Phys. Lett.,1994, 65(23):2922-2924.[6] Kim Y, Choi D, Lim H, et al. Accelerated pre-oxidation method for healing progressive electrical short in organic light-emitting devices[J]. Appl. Phys. Lett.,2003, 82(14):2200-2202.[7] Aziz H, Popovic Z, Xie S, et al. Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices[J]. Appl. Phys. Lett.,1998, 72(7):756-758.[8] Ikeda T, Murata H, Kinoshita Y, et al. Enhanced stability of organic light-emitting devices fabricated under ultra-high vacuum condition[J]. Chem. Phys. Lett., 2006, 426(1/2/3):111-114.[9] Lee S T, Gao Z Q, Hung L S. Metal diffusion from electrodes in organic light-emitting diodes[J]. Appl. Phys. Lett.,1999, 75(10):1404-1406.[10] Aziz H, Popovic Z D, Hu N X, et al. Degradation mechanism of small molecule-based organic light-emitting devices[J]. Science,1999, 283(5409):1900-1902.[11] Melpignano P, Baron-Toaldo A, Biondo V, et al. Mechanism of dark-spot degradation of organic light-emitting devices[J]. Appl. Phys. Lett., 2005, 86(4):041105-1-3.[12] Matsushima T, Murata H. Enhancing power conversion efficiencies and operational stability of organic light-emitting diodes by increasing carrier injection efficiencies at anode/organic and organic/organic heterojunction interfaces[J]. J. Appl. Phys.,2008, 104(3):034507-1-4.[13] Ma H, Yip H L, Huang F, et al. Interface engineering for organic electronics[J]. Adv. Funct. Mater., 2010, 20(9):1371-1388.[14] Grozea D, Turak A, Yuan Y, et al. Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface[J]. J. Appl. Phys., 2007, 101(3):033522-1-6.[15] Wang Q, Luo Y C, Aziz H. Photodegradation of the organic/metal cathode interface in organic light-emitting devices[J]. Appl. Phys. Lett.,2010, 97(6):063309-1-3.[16] Aziz H, Popovic Z, Tripp C P, et al. Degradation processes at the cathode/organic interface in organic light emitting devices with Mg∶Ag cathodes[J]. Appl. Phys. Lett.,1998, 72(21):2642-2644.[17] Schaer M, Nuesch F, Berner D, et al. Water vapor and oxygen degradation mechanisms in organic light emitting diodes[J]. Adv. Funct. Mater., 2001, 11(2):116-121.[18] McElvain J, Antoniadis H, Hueschen M R, et al. Formation and growth of black spots in organic light-emitting diodes[J]. J. Appl. Phys., 1996, 80(10):6002-6007.[19] Liew Y F, Aziz H, Hu N X, et al. Investigation of the sites of dark spots in organic light-emitting devices[J]. Appl. Phys. Lett.,2000, 77(17):2650-2652.[20] Scott J C, Kaufman J H, Brock P J, et al. Degradation and failure of MEH-PPV light-emitting diodes[J]. J. Appl. Phys.,1996, 79(5):2745-2751.[21] Fery C, Racine B, Vaufrey D, et al. Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes[J]. Appl. Phys. Lett., 2005, 87(21):213502-1-3.[22] Papadimitrakopoulos F, Zhang X M, Thomsen D L, et al. A chemical failure mechanism for aluminum(Ⅲ) 8-hydroxyquinoline light-emitting devices[J]. Chem. Mater.,1996, 8(7):1363-1365.[23] Liao L S, Sun X H, Cheng L F, et al. Ambient effect on the electronic structures of tris-(8-hydroxyquinoline) aluminum films investigated by photoelectron spectroscopy[J]. Chem. Phys. Lett., 2001, 333(3/4):212-216.[24] Fong H H, So S K. Effects of nitrogen, oxygen, and moisture on the electron transport in tris(8-hydroxyquinoline) aluminum[J]. J. Appl. Phys.,2005, 98(2):023711-1-4.[25] Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organic thin-films[J]. J. Appl. Phys.,1989, 65(9):3610-3616.[26] Yamashita K, Futenma J, Mori T, et al. Effect of location and width of doping region on efficiency in doped organic light-emitting diodes[J]. Synth. Met., 2000, 111(1):87-90.[27] Kondakov D Y, Sandifer J R, Tang C W, et al. Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss[J]. J. Appl. Phys.,2003, 93(2):1108-1119.[28] Liao L S, Tang C W. Moisture exposure to different layers in organic light-emitting diodes and the effect on electroluminescence characteristics[J]. J. Appl. Phys.,2008, 104(4):044501-1-8.[29] Yu G, Shen D Z, Liu Y Q, et al. Fluorescence stability of 8-hydroxyquinoline aluminum[J]. Chem. Phys. Lett., 2001, 333(3/4):207-211.
0
浏览量
154
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构