浏览全部资源
扫码关注微信
1. 南京大学光伏工程中心,江苏 南京,210093
2. 南京大学物理学院,江苏 南京,210093
收稿日期:2013-01-21,
修回日期:2013-04-17,
纸质出版日期:2013-06-10
移动端阅览
林敏, 张凤鸣, 吴小山. 硅太阳电池表面多孔硅的制备与作用[J]. 发光学报, 2013,34(6): 758-762
LIN Min, ZHANG Feng-ming, WU Xiao-shan. Preparation and Effect of Porous Silicon on The Surface of Silicon Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(6): 758-762
林敏, 张凤鸣, 吴小山. 硅太阳电池表面多孔硅的制备与作用[J]. 发光学报, 2013,34(6): 758-762 DOI: 10.3788/fgxb20133406.0758.
LIN Min, ZHANG Feng-ming, WU Xiao-shan. Preparation and Effect of Porous Silicon on The Surface of Silicon Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(6): 758-762 DOI: 10.3788/fgxb20133406.0758.
利用电化学方法在硅太阳能电池的金字塔上面刻蚀一层多孔硅
研究多孔硅对硅表面反射率、光电转换量子效率的影响以及氧化对不同波长的光电转换量子效率的影响。研究发现氢氟酸浓度对反射率没有明显的影响
而电化学反应时间可以调制反射率最低波长点
最终获得综合反射率低至2%的优质减反效果。多孔硅的存在使得300~500 nm的光电转换量子效率降低
500 nm以上长波的光电转换量子效率增加。氧气氛围中的快速退火能够有效降低少数载流子的表面复合
从而增加短波段的光电转换量子效率。
A layer of porous silicon was formed on the surface of the pyramids on the silicon using the electrochemical method. The effect of the porous silicon on the reflectivity of surface as well as the photovoltaic conversion quantum efficiency and the effect of oxidation on the photovoltaic conversion quantum efficiency for different wavelengths were studied. It was observed that the density of hydrofluoric acid(HF) did not make a difference on the reflectivity of the surface
and the electrochemical etching time can determine the minimun-reflection wavelength. The average reflectivity of the structure can be 2%. Because of the porous silicon
the photovoltaic conversion quantum efficiency is decreased for the wavelength between 300~500 nm
and is increased for the wavelength beyond 500 nm. Rapid oxidation can decrease the surface recombination so as to increase the photovoltaic conversion quantum efficiency for the short wavelength
and it can be a guidance for increasing the efficiency of the silicon solar cells.
Bisi O, Ossicini S, Pavesi L, et al. Porous silicon: A quantum sponge structure for silicon based optoelectronics[J]. Surf. Sci. Reports,2000, 38(1/2/3):1-126.[2] Strehlke S, Bastide S, Guillet J, et al. Design of porous silicon antireflection coatings for silicon solar cells[J]. Mater. Sci. Eng.B, 2000, 69/70(14):81-86.[3] Selj J H, Thgersen A, Foss S E, et al. Optimization of multilayer porous silicon antireflection coatings for silicon solar cells[J]. J. Appl. Phys.,2010, 107(7):074904-1-10.[4] Liu Y P, Lai T, Li H L, et al. Nanostructure formation and passivation of large-area black silicon for solar cell applications[J]. Small,2012, 8(9):1392-1397.[5] Ma L L, Zhou Y C, Jiang N. Wide-band "black silicon" based on porous silicon[J]. Appl. Phys. Lett.,2006, 88(17):171907-1-3.[6] Kim B S, Lee D H. Silicon solar cell with nanoporous structure formed on a textured surface[J]. J. Am. Ceram. Soc.,2009, 92(10):2415-2417.[7] Pickering C, Beale M I J, Robbins D J, et al. Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon[J]. J. Phys.C: Solid State Phys., 1984, 17:6535-6552.[8] Dzhafarov T D, Aslanov S S, Ragimov S H, et al. Effect of nanoporous silicon coating on silicon solar cell performance[J]. Vacuum,2012, 86(12):1875-1879.[9] Pavesi L. Porous silicon dielectric multilayers and microcavities[J]. Rivista Del Nuovo Cimento,1997, 20(10):1-76.[10] Shan W G, Xie Z F, Wu X S, et al. Simulation optimization of p+ layer of back surface field for crystalline silicon solar cell by simulation[J]. J. Synth. Cryst.(人工晶体学报),2012, 41(5):1168-1173 (in Chinese).
0
浏览量
264
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构