浏览全部资源
扫码关注微信
宁夏大学 物理电气信息学院,宁夏 银川,750021
收稿日期:2012-12-26,
修回日期:2013-04-12,
纸质出版日期:2013-06-10
移动端阅览
沈宏君, 张瑞, 卢辉东. 一种增加光吸收的非晶硅薄膜太阳能电池的设计[J]. 发光学报, 2013,34(6): 753-757
SHEN Hong-jun, ZHANG Rui, LU Hui-dong. Design of An Amorphous Silicon Thin-film Sloar Cell with Absorption Enhancement[J]. Chinese Journal of Luminescence, 2013,34(6): 753-757
沈宏君, 张瑞, 卢辉东. 一种增加光吸收的非晶硅薄膜太阳能电池的设计[J]. 发光学报, 2013,34(6): 753-757 DOI: 10.3788/fgxb20133406.0753.
SHEN Hong-jun, ZHANG Rui, LU Hui-dong. Design of An Amorphous Silicon Thin-film Sloar Cell with Absorption Enhancement[J]. Chinese Journal of Luminescence, 2013,34(6): 753-757 DOI: 10.3788/fgxb20133406.0753.
分别设计与优化了非晶薄膜太阳能电池的上表层和电池底部结构
采用严格耦合波方法(RCWA)数值计算了电池的光吸收。计算结果表明:在仅考虑TM偏振的情况下
优化后的增透膜与无增透膜相比
300~840 nm波长范围内的吸收平均提高了35%左右;优化后的背反射器与无背反射器相比
700~840 nm波长范围内的吸收平均提高了23%左右。该非晶硅薄膜太阳能电池结构在全角宽频范围内有较高吸收
可以提高太阳能电池的转化效率。
The front-surface and the bottom of amorphous silicon(a-Si) thin-film solar cell are designed respectively. Light absorption is calculated by using the rigorous coupled wave analysis(RCWA). In TM polarization
the absorption of solar cells with optimized AR coating can be increased by an average of 35% compared with that without AR coating in the range of 300~840 nm. Furthermore
the absorption of solar cells with optimized back reflector can be increased by an average of 23% compared with that without back reflector in the range of 700~840 nm. The amorphous silicon(a-Si) thin-film solar cell that we design has broadband and omnidirectional absorption
so that it can improve the conversion efficiency of solar cells.
Zeng L, Yi Y, Hong C Y, et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector[J]. Appl. Phys. Lett.,2006, 89(11):111111-1-3.[2] Zheng G G, Xian F L, Li X Y. Enhancement of light absorption in thin film silicon solar cells with metallic grating and one-dimensional photonic crystals[J]. Chin. Phys. Lett.,2011, 28(5):05421-1-4.[3] Chhajed S, Schubert M F, Kim J K, et al. Nanostructured multilayer graded index antireflection coating for Si solar cells with broadband and omnidirectional characteristics[J]. Appl. Phys. Lett.,2008, 93(25):251108-1-3.[4] Springer J, Poruba A, Mullerova L, et al. Absorption loss at nanorough silver back reflector of thin-film silicon solar cells[J]. J. Appl. Phys., 2004, 95(3):1427-1429.[5] Bermel P, Luo C Y, Zeng L R, et al. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals[J]. Opt. Exp.,2007, 15(25):16986-17000.[6] Zhou D Y, Biswas R. Photonic crystal enhanced light-trapping in thin film solar cells[J]. J. Appl. Phys.,2008, 103(9):093102-1-5.[7] Zhang W, Zheng G G, Li X Y. Design of light trapping structures for light-absorption enhancement in thin film solar cells[J]. Optik, 2012,Available online.[8] Chutinan A, Kherani N P, Zukotynski S. High-efficiency photonic crystal solar cell arc-hitecture[J]. Opt. Exp.,2009, 17(11):8871-8878.[9] Moharam M G, Gaylord T K. Diffraction analysis of dielectric surface-relief gratings[J]. J. Opt. Soc. Am., 1982, 72(10):1385-1392.[10] Moharam M G, Pommet D A, Grann E B. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach[J]. J. Opt. Soc. Am.A, 1995, 12(5):1077-1084.[11] Shen H J, Lu H D, Cheng X Z. Back reflectors of thin-film silicon solar cells consisting of one-dimensional diffraction gratings and one-dimensional photonic crystal[J]. Chin. J. Lumin.(发光学报), 2012, 33(6):633-639 (in Chinese).[12] Moharam M G, Grann E B, Pommet D A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. J. Opt. Soc. Am.A, 1995, 12(5):1068-1076.[13] Kong W J, Wang S H, Wei S J, et al. Diffraction property of broadband metal multi-layer dielectric gratings based on rigorous coupled-wave analysis[J]. Acta Physica Sinica (物理学报),2011, 60(11):114214-1-7 (in Chinese).
0
浏览量
131
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构