浏览全部资源
扫码关注微信
江西理工大学冶金与化学工程学院,江西 赣州,341000
收稿日期:2013-03-26,
修回日期:2013-04-25,
纸质出版日期:2013-06-10
移动端阅览
廖金生, 周全惠, 周单, 柳少华, 温和瑞. 水热法合成LuVO<sub>4</sub>∶Eu<sup>3+</sup>红色荧光粉及其光谱性能研究[J]. 发光学报, 2013,34(6): 738-743
LIAO Jin-sheng, ZHOU Quan-hui, ZHOU Dan, LIU Shao-hua, WEN He-rui. Hydrothermal Synthesis and Luminescence Properties of Eu<sup>3+</sup>-activated LuVO<sub>4</sub> Red Phosphors[J]. Chinese Journal of Luminescence, 2013,34(6): 738-743
廖金生, 周全惠, 周单, 柳少华, 温和瑞. 水热法合成LuVO<sub>4</sub>∶Eu<sup>3+</sup>红色荧光粉及其光谱性能研究[J]. 发光学报, 2013,34(6): 738-743 DOI: 10.3788/fgxb20133406.0738.
LIAO Jin-sheng, ZHOU Quan-hui, ZHOU Dan, LIU Shao-hua, WEN He-rui. Hydrothermal Synthesis and Luminescence Properties of Eu<sup>3+</sup>-activated LuVO<sub>4</sub> Red Phosphors[J]. Chinese Journal of Luminescence, 2013,34(6): 738-743 DOI: 10.3788/fgxb20133406.0738.
利用水热法经过或未经过进一步热处理合成LuVO
4
:Eu
3+
亚微米(或纳米)荧光粉。通过X射线粉末衍射、扫描电子显微镜、光致发光光谱、衰减曲线对所得的荧光粉进行性能表征。LuVO
4
:Eu
3+
荧光粉的激发光谱在275 nm的吸收峰主要来源于EuO电荷跃迁
Eu
3+
的f-f跃迁在紫外和可见光区域有395 nm和 466 nm两个强峰。从最佳掺杂摩尔分数的LuVO
4
:8%Eu
3+
荧光粉中观察到Eu
3+
在619 nm 处强烈的发射峰对应于
5
D
0
7
F
2
跃迁。实验结果表明LuVO
4
:Eu
3+
可作为潜在的红色荧光粉应用于显示与照明领域。
LuVO
4
:Eu
3+
nano-(or submicron-) phosphors have been prepared by hydrothermal method without (or with) further heat treatment. The properties of the resulting phosphors are characterized by X-ray diffraction
scanning electron microscope
photoluminescence spectra and decay curve. The excitation spectra of LuVO
4
:Eu
3+
phosphors are mainly attributed to EuO charge-transfer band at about 275 nm as well as some sharp lines of Eu
3+
f-f transitions in near-UV and visible regions with two strong peaks at 395 and 466 nm
respectively. Under the 275 nm excitation
intense red emission peak at 619 nm corresponding to
5
D
0
7
F
2
transition of Eu
3+
is observed for LuVO
4
:8%Eu
3+
phosphors as the optimal doping mole fraction. The luminescence properties suggest that LuVO
4
:Eu
3+
phosphor may be applied as a potential red phosphor candidate for lighting and displays.
Ronda C R. Recent achievements in research on phosphors for lamps and displays[J]. J. Lumin.,1997, 72/73/74:49-54.[2] Yang X X, Lv S C, Qu X R, et al. Hydrothermal preparation of BaWO4:Eu3+ red phosphor and its luminescent properties[J]. Chin. J. Lumin.(发光学报),2012, 33(8):851-856 (in Chinese).[3] Maunier C, Doualan J L, Moncorg R, et al. Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping[J]. J. Opt. Soc. Am.B, 2002, 19(8):1794-1800.[4] Errandonea D, Lacomba-Perales R, Ruiz-Fuertes J, et al. High-pressure structural investigation of several zircon-type orthovanadates[J]. Phys. Rev.B, 2009, 79(18):184104-1-9.[5] Justel T, Nikol H, Ronda C. New developments in the field of luminescent materials for lighting and displays[J]. Angew. Chem. Int. Ed.,1998, 37(22):3084-3103.[6] Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln(Ln=Eu, Sm, Dy)[J]. J. Phys. Chem.B, 1998, 102(50):10129-10135.[7] Fan W L, Song X Y, Bu Y X, et al. Selected-control hydrothermal synthesis and formation mechanism of monazite-and zircon-type LaVO4 nanocrystals[J]. J. Phys. Chem.B, 2006, 110(46):23247-23254.[8] Jia G, Liu K, Zheng Y. H, et al. Facile synthesis and luminescence properties of highly uniform MF/YVO4:Ln3+(Ln=Eu, Dy, and Sm) composite microspheres[J]. Cryst. Growth Des.,2009, 9(8):3702-3706.[9] Wang G F, Qin W P, Zhang D S, et al. Enhanced photoluminescence of water soluble YVO4:Ln3+ (Ln=Eu, Dy, Sm, and Ce) nanocrystals by Ba2+ doping[J]. J. Phys. Chem.C, 2008, 112(44):17042-17045.[10] Liao J S, Qiu B, Lai H S. Synthesis and luminescence properties of Tb3+:NaGd(WO4)2 novel green phosphors[J]. J. Lumin.,2009, 129(7):668-671.[11] Yan B, Su X Q. LuVO4:RE3+ (RE=Sm, Eu, Dy, Er) phosphors by in-situ chemical precipitation construction of hybrid precursors[J]. Opt. Mater.,2007, 29(5):547-551.[12] Tang S, Huang M L, Wang J L, et al. Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors[J]. J. Alloys Compds.,2012, 513:474-480.[13] Haase M, Riwotzki K, Meyssamy H, et al. Synthesis and properties of colloidal lanthanide-doped nanocrystals[J]. J. Alloys Compds.,2000, 303/304:191-197.[14] Huignard A, Buissette V, Laurent G, et al. Synthesis and characterizations of YVO4:Eu colloids[J]. Chem. Mater.,2002, 14(5):2264-2269.[15] Huignard A, Gacoin T, Boilot J P. Synthesis and luminescence properties of colloidal YVO4:Eu phosphors[J]. Chem. Mater.,2000, 12(4):1090-1094.[16] Zhang H W, Fu X Y, Niu S Y, et al. Low temperature synthesis of nanocrystalline YVO4:Eu via polyacrylamide gel method[J]. J. Solid State Chem.,2004, 177(8):2649-2654.[17] Boyer D, Bertrand-Chadeyron G, Mahiou R, et al. Synthesis dependent luminescence efficiency in Eu3+ doped polycrystalline YBO3[J]. J. Mater. Chem.,1999, 9(1):211-214.[18] Frey S T, Horrocks W. On correlating the frequency of the 7F0 5D0 transition in Eu3+ complexes with the sum of 'nephelauxetic parameters for all of the coordinating atoms[J]. Inorg. Chim. Acta, 1995, 229(1/2):383-390.[19] Wang J, Xu Y H, Hojamberdiev M. Hydrothermal synthesis of well-dispersed YVO4:Eu3+ microspheres and their photoluminescence properties[J]. J. Alloys Compds.,2009, 481(1/2):896-902.[20] Yu M, Lin J, Fang J. Silica spheres coated with YVO4:Eu3+ layers via sol-gel process: A simple method to obtain spherical core-shell phosphors[J]. Chem. Mater.,2005, 17(17):1783-1791.
0
浏览量
118
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构