浏览全部资源
扫码关注微信
1. 洛阳理工学院 材料科学与工程系,河南 洛阳,471023
2. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2013-04-02,
修回日期:2013-04-18,
纸质出版日期:2013-06-10
移动端阅览
赵军伟, 王晓峰, 王玉江, 曾庆辉, 孔祥贵. 温度依赖的&beta;-NaYF<sub>4</sub>∶Yb<sup>3+</sup>,Er<sup>3+</sup>纳米片的上转换发光[J]. 发光学报, 2013,34(6): 732-737
ZHAO Jun-wei, WANG Xiao-feng, WANG Yu-jiang, ZENG Qing-hui, KONG Xiang-gui. Temperature-dependent Upconversion Luminescence of &beta;-NaYF<sub>4</sub>∶Yb<sup>3+</sup>,Er<sup>3+</sup> Nanoplates[J]. Chinese Journal of Luminescence, 2013,34(6): 732-737
赵军伟, 王晓峰, 王玉江, 曾庆辉, 孔祥贵. 温度依赖的&beta;-NaYF<sub>4</sub>∶Yb<sup>3+</sup>,Er<sup>3+</sup>纳米片的上转换发光[J]. 发光学报, 2013,34(6): 732-737 DOI: 10.3788/fgxb20133406.0732.
ZHAO Jun-wei, WANG Xiao-feng, WANG Yu-jiang, ZENG Qing-hui, KONG Xiang-gui. Temperature-dependent Upconversion Luminescence of &beta;-NaYF<sub>4</sub>∶Yb<sup>3+</sup>,Er<sup>3+</sup> Nanoplates[J]. Chinese Journal of Luminescence, 2013,34(6): 732-737 DOI: 10.3788/fgxb20133406.0732.
研究了980 nm激发下-NaYF
4
:Yb
3+
Er
3+
纳米片在不同温度下的上转换发光。在不同温度下
观察到了较强的绿色和红色上转换发光
分别对应于 Er
3+
的(
2
H
11/2
4
S
3/2
)
4
I
15/2
和
4
F
9/2
4
I
15/2
能级跃迁。随着温度的升高
520 nm 的绿色发光带和660 nm的红色发光带强度逐渐增大
545 nm 的绿色发光带呈现出先增强(84~204 K)后减弱的趋势(204~483 K)。分析了样品上转换发光随温度变化的原因
并用三能级模型对样品的上转换发光随温度的变化规律进行了理论分析。
Temperature dependent characteristics of upconversion luminescence in -NaYF
4
:Yb
3+
Er
3+
nanoplates under 980 nm excitation were reported. Intense green and red upconversion emissions corresponding to (
2
H
11/2
4
S
3/2
)
4
I
15/2
and
4
F
9/2
4
I
15/2
transitions of the Er
3+
ions were observed
respectively. The green emission around 520 nm and the red emission around 660 nm continuously increase with increasing of temperature. The emission around 545 nm increases from 84 to 204 K and then decreases from 204 to 483 K. The temperature dependen ce of intensity characteristics was systematically analyzed by a simple three-level system.
Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids[J]. Chem. Rev.,2004, 104(1):139-174.[2] Sun C J, Xu Z H, Yan B H, et al. Application of NaYF4∶Yb,Er upconversion fluorescence nanocrystals for solution-processed near infrared photodetectors[J]. Appl. Phys. Lett., 2007, 91(19):191113-1-3.[3] Wang F, Banerjee D, Liu Y S, et al. Upconversion nanoparticles in biological labeling, imaging, and therapy[J]. Analyst.,2010, 135(8):1839-1854. [4] Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chem. Soc. Rev., 2009, 38(4):976-989. [5] Zhou J, Zhu X J, Chen M, et al. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging[J]. Biomater.,2012, 33(26):6201-6210.[6] Li L L, Zhang R B, Yin L L, et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes[J]. Angew. Chem. Int. Ed.,2012, 51(25):6121-6215.[7] Zhou A G, Wei Y C, Wu B Y, et al. Pyropheophorbide a and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy[J]. Mol. Pharmaceutics.,2012, 9(6):1580-1589. [8] Shen J, Sun L D, Yan C H. Luminescent rare earth nanomaterials for bioprobe applications[J]. Dalton Trans.,2008, 9226(42):5687-5697.[9] Rahman P, Green M. The synthesis of rare earth fluoride based nanoparticles[J]. Nanoscale,2009, 1(2):214-224.[10] Li C X, Lin J. Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application[J]. J. Mater. Chem.,2010, 20(33):6831-6847.[11] Pollnau M, Gamelin D R, Lthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev.B, 2000, 61(5):3337-3346.[12] Suyver J F, Aebischer A, Garca-Revilla S, et al. Anomalous power dependence of sensitized upconversion luminescence[J]. Phys. Rev.B, 2005, 71(12):125123-1-9.[13] Idris N M, Gnanasammandhan M K, Zhang J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J]. Nat. Med.,2012, 18(10):1580-1585.[14] Berthou H, Jorgensen C K. Optical-fiber temperature sensor based on upconversion-excited fluorescence[J]. Opt. Lett.,1990, 15(9):1100-1102.[15] Wade S A, Collins S F, Baxter G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. J. Appl. Phys.,2003, 94(8):4743-4756.[16] Wang X, Kong X G, Yu Y, et al. Effect of annealing on upconversion luminescence of ZnO∶Er3+ nanocrystals and high thermal sensitivity[J]. J. Phys. Chem.C, 2007, 111(41):15119-15124. [17] Bai X, Song H W, Pan G H, et al. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects[J]. J. Phys. Chem.C, 2007, 111(36):13611-13617.[18] Lei Y Q, Song H W, Yang L M, et al. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3∶Er3+,Yb3+ nanowires[J]. J. Chem. Phys.,2005, 123(17):174710-1-5.[19] Shan J N, Kong W J, Wei R. An investigation of the thermal sensitivity and stability of the -NaYF4∶Yb,Er upconversion nanophosphors[J]. J. Appl. Phys.,2010, 107(5):054901-1-5.[20] Wu X, Dai S, Toth L M, et al. Green upconversion emission from Er3+ ion doped into sol-gel silica glasses under red light (647.1 nm) excitation[J]. J. Phys. Chem., 1995, 99(13):4447-4450.[21] Vetrone F, Boyer J C, Capobianco J A. NIR to visible upconversion in nanocrystalline and bulk Lu2O3∶Er3+[J]. J. Phys. Chem. B, 2002, 106(22):5622-5628.[22] Wang X, Kong X G, Shan G Y, et al. Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals[J]. J. Phys. Chem. B, 2004, 108(48):18408-18413.[23] Sun Y J, Liu H J, Wang X, et al. Optical spectroscopy and visible upconversion studies of YVO4∶Er3+ nanocrystals synthesized by a hydrothermal process[J]. Chem. Mater.,2006, 18(11):2726-2732.[24] Shen X, Nie Q H, Xu T F, et al. Temperature dependence of upconversion luminescence in erbium-doped tellurite glasses[J]. J. Lumin.,2010, 130(8):1353-1356.[25] Sun Y J, Chen Y, Tian L J, et al. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4∶Yb,Er nanocrystals[J]. Nanotechnol., 2007, 18(27):275609-1-9.[26] Zhao J W, Sun Y J, Kong X G, et al. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4∶Yb3+,Er3+ nanocrystals/nanoplates at low doping level[J]. J. Phys. Chem. B, 2008, 112(49):15666-15672.
0
浏览量
27
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构