浏览全部资源
扫码关注微信
内蒙古科技大学机械工程学院,内蒙古 包头,014010
收稿日期:2013-02-25,
修回日期:2013-05-01,
纸质出版日期:2013-06-10
移动端阅览
刘学杰, 吴帅, 任元. TiN(001)表面上3N1Ti1Si岛构型及其演变的第一性原理研究[J]. 发光学报, 2013,34(6): 727-731
LIU Xue-jie, WU Shuai, REN Yuan. Configuration and Evolution of 3N1Ti1Si Island on TiN(001) Surface:Ab Initio Study[J]. Chinese Journal of Luminescence, 2013,34(6): 727-731
刘学杰, 吴帅, 任元. TiN(001)表面上3N1Ti1Si岛构型及其演变的第一性原理研究[J]. 发光学报, 2013,34(6): 727-731 DOI: 10.3788/fgxb20133406.0727.
LIU Xue-jie, WU Shuai, REN Yuan. Configuration and Evolution of 3N1Ti1Si Island on TiN(001) Surface:Ab Initio Study[J]. Chinese Journal of Luminescence, 2013,34(6): 727-731 DOI: 10.3788/fgxb20133406.0727.
为了研究Ti-Si-N薄膜生长过程中界面的形成
采用第一性原理计算了在TiN(001)表面上3N1Ti1Si岛的各构型的总能量和吸附能
并计算了Si-in-3N1Ti构型转向Ti-in-3N1Si构型的两种演变方式所对应的激活能。计算结果表明:在3N1Ti1Si的几种构型中
Ti-in-3N1Si构型是最低能量的稳定结构
这种构型是由SiN相从TiN相中分离出来而形成的;两种演变方式中以Si粒子迁出Ti粒子迁入所需构型演变的激活能较小
更容易实现构型演变;与2Ti2N1Si构型演变相比
3N1Ti-1Si岛演变中SiN与TiN分离比较容易实现
这意味着适当增加氮分量有利于SiN与TiN的分离。
In order to study the interface formation in the growth process of Ti-Si-N films
a series of calculations have been carried out with the first principle method to investigate the total energies and adsorption energies of some 3N1Ti1Si island configurations on the TiN (001) surface
and also the activation energies of two kinds of transformations from the Si-in-3N1Ti configuration to the Ti-in-3N1Si configuration. The calculations present some interesting results:(1) According to the energies of all 3N1Ti1Si configurations
the Ti-in-3N1Si configuration is a relative stable structure. It implies that silicon atom outside of TiN island could lead to the structure stable. (2) In the island evolution from the Si-in-3N1Ti configuration to the Ti-in-3N1Si configuration
the diffusion of silicon and titanium atoms need less activation energy than the diffusion of nitrogen atoms. (3) Compared with the evolution of 2Ti2N1Si island
the phase separation of SiN and TiN could be easily performed in the evolution of 3N1Ti-1Si island. This means that properly increasing the partial pressure of nitrogen in the deposition is beneficial to the interface formation in Ti-Si-N film growth process.
Zhao H Y, Fan Q L, Song L T, et al. Research status and development of superhard nanocomposite films[J]. J. Inorg. Mater.(无机材料学报),2004, 19(1):9-16 (in Chinese).[2] Li S Z, Shi Y L, Peng H R. Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition[J]. Plasma Chem.Plasma Proc.,1992, 12(3):287-297.[3] Veprek S, Reiprich S. A concept for the design of novel superhard coatings[J]. Thin Solid Films,1995, 268(1):64-71.[4] Veprek S, Niederhofer A, Moto K, et al. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a-and nc-TiSi2 nanocomposites with HV=80 to 105 GPa[J]. Surf. Coatings Technol., 2000, 133/134:152-159.[5] Veprek S, Haussmann M, Reiprich S. Superhard nanocrystalline W2N/amorphous Si3N4 composite materials[J]. J. Vac. Sci. Technol.A: Surf. Films, 1996, 14(1):46-51.[6] Veprek S, Haussmann M, Reiprich S, et al. Novel thermodynamically stable and oxidation resistant superhard coating materials[J]. Surf. Coatings Technol., 1996, 86/87(1):394-401.[7] Marten T, Isaev E, Alling B, et al. Single-monolayer SiNx embedded in TiN: A first-principles study[J]. Phys. Rev.B, 2010, 81(21):212102-1-4.[8] Marten T, Isaev E, Alling B, et al. First-principles study of the SiNx/TiN(001) interface[J]. Phys. Rev.B, 2012, 85(10):104106-1-7.[9] Zhang R F, Veprek S. On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system[J]. Mater. Sci. Eng. A, 2006, 424(1/2):128-137.[10] Zhang R F, Veprek S. Crystalline-to-amorphous transition in Ti1-xSixN solid solution and the stability of fcc SiN studied by combined ab initio density functional theory and thermodynamic calculations[J]. Phys. Rev.B, 2007, 76(17):4105-4110.[11] Zhang R F, Veprek S. Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1-xSixN solid solutions studied by ab initio calculation and thermodynamic modeling[J]. Thin Solid Films,2008, 516(8):2264-2275.[12] Liu X J, Zhao L L, Yuan R, et al. The configuration and evolution of Ti-Si-N island on TiN(001)surface: Ab initio study[J]. Adv. Mater. Res., 2011, 295/297:301-306.[13] Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem[J]. Proc. Natl. Acad. Sci. USA, 1979, 76(12):6062-6065.[14] Khon W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965, 140(4A):A1133-A1138.[15] Roberston J. Band offsets of wide-band-gap oxides and implications for future electronic devices[J]. J. Vac. Sci. Technol.B, 2000, 18(3):1785-1791.[16] Kresse G, Furthmuller J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci.,1996, 6(1):15-50.[17] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3):1758-1775.[18] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev.B, 1990, 41(11):7892-7895.[19] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B, 1992, 45(23):13244-13249.[20] Hendrik J, Monkhorst, James D P. Special points for Brillouin-zone integrations[J]. Phys. Rev.B, 1976,13(12):5188-5192.[21] Ma D Y, Wang X, Ma S L, et al. Nanocomposite Ti-Si-N films and effect of Si contents on pulsed DC PCVD coatings quality[J]. Acta Metallurgica Sinica (金属学报), 2003, 39(10):1047-1050 (in Chinese).
0
浏览量
175
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构