浏览全部资源
扫码关注微信
浙江师范大学 LED芯片研发中心,浙江 金华,321004
收稿日期:2013-03-08,
修回日期:2013-04-15,
纸质出版日期:2013-06-10
移动端阅览
蔡嫦芳, 孟秀清, 吴峰民, 方允樟. 电沉积温度对碘化亚铜薄膜光学性质的影响[J]. 发光学报, 2013,34(6): 721-726
CAI Chang-fang, MENG Xiu-qing, WU Feng-min, FANG Yun-zhang. Influence of Deposition Temperature on The Optical Properties of CuI Thin Films[J]. Chinese Journal of Luminescence, 2013,34(6): 721-726
蔡嫦芳, 孟秀清, 吴峰民, 方允樟. 电沉积温度对碘化亚铜薄膜光学性质的影响[J]. 发光学报, 2013,34(6): 721-726 DOI: 10.3788/fgxb20133406.0721.
CAI Chang-fang, MENG Xiu-qing, WU Feng-min, FANG Yun-zhang. Influence of Deposition Temperature on The Optical Properties of CuI Thin Films[J]. Chinese Journal of Luminescence, 2013,34(6): 721-726 DOI: 10.3788/fgxb20133406.0721.
以ITO导电玻璃衬底
CuSO
4
、KI为反应溶液
EDTA为络合剂
通过简单的电化学方法分别在40
60
80 ℃的电沉积温度下成功制备出高定向的-CuI薄膜。讨论了不同沉积温度下碘化亚铜薄膜各项性质的差异
作为比较还利用化学沉积方法在室温下合成了碘化亚铜粉末。利用X射线衍射图(XRD)进行结构分析
场发射扫描电子显微镜(SEM)进行形貌观察。实验结果表明:碘化亚铜薄膜由三角形纳米片构成
沿(111)晶相择优生长。随着电沉积温度的升高
颗粒的尺寸从2 m减小到500 nm。不同电沉积温度制备出的碘化亚铜薄膜均在拉曼光谱上呈现出一个强的LO峰和一个微弱的TO峰
峰的强度均随着电沉积温度的升高而增大。同时
光致发光(PL)光谱的分析显示出强的近带边发射峰。CuI粉末在结构及形貌等性质上与CuI薄膜有一定的差异。
Highly oriented -CuI thin films have been successfully prepared on indium doped tin oxide (ITO) glass substrate by a simple electrochemical process at different temperatures. For comparison
CuI powders are also obtained by a simple complex compound method. Analyses on phases and structures based on X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques indicate that the films are composed of CuI triangular facet nanocrystals with (111) preferred growth orientation
and decrease from 2 m to 500 nm with increase of the deposition temperature. Furthermore
photoluminescence (PL) spectroscopic analysis shows a strong near band edge emission. It is also found that the CuI powders show some diverse in structural
morphology and optical properties compared with the CuI thin films.
Aniya M, Shimojo F. Temperature dependence of the chemical bonding and ion dynamics in CuI[J]. Solid State Ionics, 2005, 167(31/32/33/34):2481-2486.[2] Ferhat M, Zaoui A, Certier M,et al. Electronic structure of the copper halides CuCl, CuBr and CuI[J]. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 1996, 39(2):95-100.[3][JP3]Sekkal W, Zaoui A. Monte Carlo study of transport properties in copper halides[J]. Phys. B, 2002, 315(1/2/3):201-209.[JP][4][JP3]Rusop M, Soga T, Jimbo T,et al. Copper iodide thin films as a p-type electrical conductivity in dye-sensitized p-CuI|dye|n-TiO2[JP] heterojunction solid state solar cells[J]. Surf. Rev. Lett., 2004, 11(6):577-579.[5] Kumara G R A, Kaneko S, Okuya M,et al. Fabrication of dye-sensitized solar cells usingtriethylamine hydrothiocyanate as a CuI crystal growth inhibitor[J]. Langmuir, 2002, 18(26):10493-10495.[6] Tanaka I, Nakayama M. Stimulated emission due to the inelastic scattering from the heavy-hole exciton to the light-hole exciton in CuI thin films[J]. J. Appl. Phys., 2002, 92(7):3511-3515.[7] Tanaka T, Kawabata K, Hirose M. Transparent, conductive CuI films prepared by RF-DC coupled magnetron sputtering[J]. Thin Solid Films, 1996, 281/282(1):179-181.[8] Sirimanne P M, Rusop M, Shirata T,et al. Characterization of transparent conducting CuI thin films prepared by pulse laser deposition technique[J]. Chem. Phys. Lett., 2002, 366(5/6):485-489.[9] Oliveri C G, Gianneschi N C, Nguyen S T,et al. Supramolecular allosteric cofacial porphyrin complexes[J]. J. Am. Chem. Soc., 2006, 128(50):16286-16296.[10] Pfitzner A, Brau M F, Zweck J,et al. Phosphorus nanorods-two allotropic modifications of a long-known element[J]. Angew Chem. Int. Ed., 2004, 43(32):4228-4231.[11] Honglan K, Run L, Keli C,et al. Electrodeposition and optical properties of highly oriented -CuI thin films[J]. Electrochimica Acta, 2010, 55(27):8121-8125.[12] Kim D, Nakayama M, Kojima O. Thermal-strain-induced splitting of heavy-and light-hole exciton energies in CuI thin films grown by vacuum evaporation[J]. Phys. Rev. B, 1999, 60(19):13879-13884.[13] Tennakone K, Kumara G R R A, Kottegoda I R M,et al. Deposition of thin conducting films of CuI on glass[J]. Solar Energy Materials and Solar Cells, 1998, 55(3):283-289.[14] Hai N T M, Huemann S, Hunger R,et al. Combined scanning tunneling microscopy and synchrotron X-ray photoemission spectroscopy results on the oxidative CuI film formation on Cu(111)[J]. J. Phys. Chem. C, 2007, 111(40):14768-14781.[15] Meng X Q, Shen D Z, Zhang J Y,et al. The structural and optical properties of ZnO nanorod arrays[J]. Sol. State Comm., 2005, 135(6):179-182.[16] Brafman O, Cardona M. Raman-scattering study of pressure-induced phase transitions in CuI[J]. Phys. Rev. B, 1977, 15(2):1081-1086.[17] Zhi Z, Airuo L, Shumin W,et al. Growth of highly oriented (110) -CuI film with sharp exciton band[J]. Mater. Chem., 2008, 18(8):852-854.[18] Ichida H, Kanematsu Y, Shimomura T,et al. Photoluminescence dynamics of exciton-exciton scattering processes in CuI thin films[J]. Phys. Rev. B, 2005, 72(4):045210-1-5.[19] Feraoun H, Aourag H, Certier M. Theoretical studies of substoichiometric CuI[J]. Mater. Chem. Phys., 2003, 82(3):597-601.
0
浏览量
147
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构