浏览全部资源
扫码关注微信
宁波大学 光电子功能材料重点实验室,浙江 宁波,315211
收稿日期:2013-01-24,
修回日期:2013-04-03,
纸质出版日期:2013-06-10
移动端阅览
彭江涛, 夏海平, 汪沛渊, 胡皓阳, 唐磊. Ho<sup>3+</sup>∶LiYF<sub>4</sub>晶体的中红外发光特性[J]. 发光学报, 2013,34(6): 702-710
PENG Jiang-tao, XIA Hai-ping, WANG Pei-yuan, HU Hao-yang, TANG Lei. Mid-infrared Emission Properties of Ho<sup>3+</sup> Doped LiYF<sub>4</sub> Single Crystals[J]. Chinese Journal of Luminescence, 2013,34(6): 702-710
彭江涛, 夏海平, 汪沛渊, 胡皓阳, 唐磊. Ho<sup>3+</sup>∶LiYF<sub>4</sub>晶体的中红外发光特性[J]. 发光学报, 2013,34(6): 702-710 DOI: 10.3788/fgxb20133406.0702.
PENG Jiang-tao, XIA Hai-ping, WANG Pei-yuan, HU Hao-yang, TANG Lei. Mid-infrared Emission Properties of Ho<sup>3+</sup> Doped LiYF<sub>4</sub> Single Crystals[J]. Chinese Journal of Luminescence, 2013,34(6): 702-710 DOI: 10.3788/fgxb20133406.0702.
用坩埚下降法制备了Ho
3+
离子掺杂的LiYF
4
单晶。测定了Ho
3+
:LiYF
4
晶体的偏振吸收光谱。应用Judd-Ofelt理论分别计算了Ho
3+
:LiYF
4
晶体中Ho
3+
离子的有效强度参数
2
4
6
、能级跃迁振子强度
f
exp
和
f
cal
、自发辐射跃迁几率
A
、荧光分支比
、辐射寿命
rad
等光谱参数。测定了样品在640 nm光激发下的红外发射光谱
观测到由Ho
3+
离子的
5
I
6
5
I
7
跃迁所致的2.8~3 m中红外发光
以及在1.2 m (
5
I
6
5
I
8
)和2.0 m(
5
I
7
5
I
8
)处较强的荧光。Ho
3+
:LiYF
4
单晶样品的吸收峰线宽较宽
计算得到1.2 m和2.0 m的峰值发射截面分别达到0.2010
-20
cm
2
和0.5110
-20
cm
2
同时测定了1 191 nm(
5
I
6
5
I
8
)和2 059 nm(
5
I
7
5
I
8
)发射的荧光寿命。研究结果表明:Ho
3+
:LiYF
4
晶体在2.0~3 m波段的中红外激光器中有较大的应用前景。
The Ho
3+
-doped LiYF
4
single crystals were grown by Bridgman method. The axial and transverse absorption spectra of Ho
3+
ions in LiYF
4
crystals were measured. The Judd-Ofelt theory was applied to calculate the J-O effective intensity parameters
2
4
6
spontaneous radiative transition rate
branching ratio
radiative lifetime of
transition and transition. IR emission spectra of Ho
3+
:LiYF
4
single crystals were measured under 640 nm wavelength excitation
and the emission band around 2.9
1.2 and 2.0 m due to
5
I
6
5
I
7
5
I
6
5
I
8
5
I
7
5
I
8
transition were observed. Based on the absorption spectra
the maximum calculated emission cross section emission at 1.2 and 2.05 m in LiYF
4
:Ho
3+
crystal are 0.2010
-20
and 0.5110
-20
cm
2
respectively. In the meantime
the emission lifetimes at 1 191 nm (
5
I
6
5
I
8
) and 2 059 nm (
5
I
7
5
I
8
) were determined to be 2.13 and 17.23 ms. The research results indicate that Ho
3+
:LiYF
4
crystal is a good candidate for mid-infrared laser media.
Wang J Y, Wu Y C. Progress of the research on photoelectronic functional crystals[J]. Mater. China (中国材料进展),2010, 29(10):1-3 (in Chinese).[2] Fu W. Laser technology of infrared countermeasure[J]. Infrared and Laser Eng.(红外与激光工程),2001, 30(3):176-187 (in Chinese).[3] Allen R, Esterowitz L, Ginther R J. Diode-pumped single-mode fluorozirconate fiber laser from the 4I11/24I13/2 transition in erbium[J]. Appl. Phys. Lett., 1990, 56(17):1635-1637.[4] Ren G G, Huang Y N. Laser-based IRCM system defenses for military and commercial aircraft[J]. Laser & Infrared (激光与红外), 2006, 36(1):1-6 (in Chinese).[5] Qi Y H. Mid-infrared laser based treatment of glaucoma developments[J]. I. E. S. (国际眼科杂志),1995, 19(6):335-338 (in Chinese).[6] Pollnau M, Spring R, Ghisler C, et al. Efficiency of erbium 3-m crystal and fiber lasers[J]. J. Quant. Electron, 1996, 32(4):657-663.[7] Simondi-Teisseire B, Viana B, Lejus A M, et al. Optimization by energy transfer of the 2.7 m emission in the Er:SrLaGa3O7 melilite crystal[J]. J. Lumin., 1997, 72(74):971-973.[8] Park S H, Lee D C, Heo J, et al. Energy transfer between Er3+ and Pr3+ in chalcogenide glasses for dualwavelength fiber-optic amplifiers[J]. J. Appl. Phys., 2002, 91(11):9072-9075.[9] Golding P S, Jackson S D, King T A, et al. Energy transfer processes in Er3+-doped and Er3+,Pr3+-codoped ZBLAN glasses[J]. Phys. Rev.B, 2000, 62(2):856-863.[10] Librantz A F H, Jackson S D, Gomes L. Pump excited state absorption in holmium-doped fluoride glass[J]. J. Appl. Phys., 2008, 103(2):023105-1-8.[11] Yu J, Xia H P, Zhang J L. The optical and gain properties of GeO2-B2O3-BaO-Na2O-Al2O3 gemanate glasses containing Ho3+ ion[J]. Opt. Tech.(光学技术),2009, 35(3):380-383 (in Chinese).[12] Quarles G J, Rosenbaum A, Marquardt C L, et al. High-efficiency 2.09 m flash lamp-pumped laser[J]. Appl. Phys. Lett., 1989, 55(11):1062-1064.[13] Rabinovich W S, Bowman S R, Feldman B J, et al. Tunable laser pumped 3 m Ho:YAlO3 laser[J]. J.Quantum Elect., 1991, 27(4):895-897.[14] Tikhomirov V K, Mendez-Ramos J, Rodriguez V D, et al. Investigation of 2.0 m emission in Tm and Ho co-doped tellurite glass[J]. Opt. Mater., 2007, 29:688-696.[15] Yu C L, He D B, Wang G N, et al. The effects of Yb/Tm/Ho doping concentration on 2.0 m wavelength luminscence in germanium glasses[J]. Acta Optica Sinica (光学学报),2009, 29(11):3143-3147 (in Chinese).[16] Yang X T, Liu Y, Li W H, et al. Theoretical and experimental analysis of Ho:YAP crystal for 2 m laser[J]. Infrared and Laser Eng.(红外与激光工程),2012, 41(7):1733-1736 (in Chinese).[17] Zhu J, Dai S X, Chen F F, et al. Mid-infrared emission properties of Ho3+ ion in nanocrystals embedded chalcohalide glass ceramics[J]. Acta Optica Sinica (光学学报),2010, 30(7):1916-1919 (in Chinese).[18] Jackson S D, Bugge F, Erbert G. Directly diode-pumped holmium fiber lasers[J]. Opt. Lett., 2007, 32(17):496-498.[19] Tian Y, Xu R R, Hu L L, et al. Intense 2.7 m and broadband 2.0 m emission from diode-pumped Er3+/Tm3+/Ho3+-doped fluorophosphate glass[J]. Opt. Lett.,2011, 36(16):3218-3220.[20] Namujilatu, Yuan B, Ruan Y F, et al. Effective segregation coefficient of rare earth ions in LiYF4 crystals[J]. J. Chin. Ceram. Soc.(硅酸盐学报), 2001, 29(6):584-586 (in Chinese).[21] Lomheim T S, Deshazer L G. Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate[J]. J. Appl.Phys.,1978, 49(11):5517-5522.[22] Luo Z D, Chen X Y, Zhao T J. Judd-Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements[J]. Opt. Commun.,1997, 134(1/2/3/4/5/6):415-422.[23] Sana J, Cases R, Alcala R. Optical properties of Tm3+ in fluorozirconate glass[J]. J. Non-Cryst. Solids,1987, 93(312):377-386.[24] Judd B R. Optical absorption intensities of rare-earth ions[J]. Phys. Rev.,1962, 127(3):750-761.[25] Ofelt G S. Intensities of crystal spectra of rare-earth ions[J]. J. Chem. Phys.,1962, 37(3):511-520.[26] Castleberry D E, Linz A. Measurement of the refractive indices of LiYF4[J]. Appl. Opt.,1975, 14(9):2056-2057.[27] Tanabes T, Ohyag T, Soga N. Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkalimetal borate glasses[J]. Phys. Rev.B, 1992, 46(6):3305-3310.[28] Desurive E. Erbium-doped Fiber Amplifiers: Principles and Application [M]. New York: Wiley-Inter-Science Publication, 1994:244-247.[29] Carnall W T, Fields P R, Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+,Ho3+, Er3+, and Tm3+[J]. J. Chem. Phys., 1968, 49(40):4424-4442.[30] Malinowski M, Frukacz Z, Szufinsk M, et al. Optical transitions of Ho3+ in YAG[J]. J. Alloys Compd.,2000, 300:389-394.[31] Wu S X, Zhang S Y, Wang Q Y. Spectral oscillator strengths and parameters for Ho3+ and Er3+ in YLiF4 crystals[J]. Chin. J. Lumin.(发光学报), 1986, 7(3):253-254 (in Chinese).[32] Tkachuk A M, Khilko A V, Petrov M V. Probities of intracenter spontaneous radiactive and nonradiactive intermultiplat transition in Ho3+ ions in an LiYF4 crystal[J]. Opt. Spectrosc.,1985, 58(1):55-59.[33] Walsh B M, Barnes N P, Bartolo B D. Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids:Application to Tm3+ and Ho3+ ions in LiYF4[J]. J. Appl. Phys.,1998, 83(5):2786-2787.[34] McCumber D E. Einstein relations connecting broadband emission and absorption spectra[J]. Phys. Rev.,1964, 136(4A):954-957.[35] Li M H, Hu H F, Qi C H. A method to calculate the emission cross section of rare-earth ions[J]. Acta Optica Sinica (光学学报),2001, 21(5):626-629 (in Chinese).
0
浏览量
235
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构