
浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学 北京,100049
3. 东北师范大学,吉林 长春,130024
收稿:2013-02-23,
修回:2013-3-27,
纸质出版:2013-06-10
移动端阅览
尚开, 张振中, 李炳辉, 徐海洋, 张立功, 赵东旭, 刘雷, 王双鹏, 申德振. 电子束泵浦ZnO/ZnMgO量子阱的最佳激发电压[J]. 发光学报, 2013,34(6): 692-697
SHANG Kai, ZHANG Zhen-zhong, LI Bing-hui, XU Hai-yang, ZHANG Li-gong, ZHAO Dong-xu, LIU Lei, WANG Shuang-peng, SHEN De-zhen. Decrease of Optimal Accelerating Voltage of ZnO-based Quantum Wells Pumped by Electron Beam[J]. Chinese Journal of Luminescence, 2013,34(6): 692-697
尚开, 张振中, 李炳辉, 徐海洋, 张立功, 赵东旭, 刘雷, 王双鹏, 申德振. 电子束泵浦ZnO/ZnMgO量子阱的最佳激发电压[J]. 发光学报, 2013,34(6): 692-697 DOI: 10.3788/fgxb20133406.0692.
SHANG Kai, ZHANG Zhen-zhong, LI Bing-hui, XU Hai-yang, ZHANG Li-gong, ZHAO Dong-xu, LIU Lei, WANG Shuang-peng, SHEN De-zhen. Decrease of Optimal Accelerating Voltage of ZnO-based Quantum Wells Pumped by Electron Beam[J]. Chinese Journal of Luminescence, 2013,34(6): 692-697 DOI: 10.3788/fgxb20133406.0692.
对不同加速电压电子束泵浦下的ZnO/Zn
0.85
Mg
0.15
O量子阱的荧光光谱进行了研究。样品利用分子束外延技术在蓝宝石衬底上生长。激子隧穿使非对称双量子阱的激发效率相对于对称阱有了明显提高。非对称阱的结构设计使最佳激发电压从对称阱的7 kV降低到了更适合器件小型化的5 kV。
Cathodoluminescence behavior
vs
. accelerating voltage of electron beam in ZnO/ZnMgO multi-quantum wells was reported in this paper. The samples were grown on sapphire substrate by plasma-assisted molecular beam epitaxy. By exciton tunneling
the excitation efficiency was improved significantly. In a sample with asymmetric double-quantum-wells
a marked reduction of the optimal acceleration voltage from 7 kV to 5 kV was obtained compared to the symmetrical multi-quantum well sample.
Oto T, Banal R G, Kataoka K, et al. 100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam[J]. Nat. Photon., 2010, 4:767-771.[2] Gronin S V, Sorokin S V, Sedova I V, et al. ZnSe-based laser structures for electron-beam pumping with graded index waveguide[J]. Phys. Status Solidi (c), 2010, 7(6):1694-1696.[3] Watanabe K, Taniguchi T, Niiyama T, et al. Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride[J]. Nat. Photon.,2009, 3:591-594.[4] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nat. Mater.,2004, 3:404-409.[5] Gruber T, Kirchner C, Kling R, et al. ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region[J]. Appl. Phys. Lett.,2004, 84(26):5359-5361.[6] Su S C, Lu Y M, Zhang Z Z, et al. Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by X-ray photoelectron spectroscopy[J]. Appl. Phys. Lett.,2008, 93(8):082108-1-8.[7] Sun J W, Lu Y M, Liu Y C, et al. Room temperature excitonic spontaneous and stimulated emission properties in ZnO/MgZnO multiple quantum wells grown on sapphire substrate[J]. J. Phys.D, 2007, 40(21):6541-6544.[8] Wei Z P, Lu Y M, Shen D Z, et al. Effect of interface on luminescence properties in ZnO/MgZnO heterostructures[J]. J. Lumin., 2006, 119/120:551-555.[9] Ye J D, Zhao H, Liu W, et al. Theoretical and experimental depth-resolved cathodoluminescence microanalysis of excitonic emission from ZnO epilayers[J]. Appl. Phys. Lett.,2008, 92(13):131914-1-3.[10] Kanaya K, Okayama S. Penetration and energy-loss theory of electrons in solid targets[J]. J. Phys. D, 1972, 5(1):43-58.[11] Drouin D, Couture A R, Joly D, et al. CASINO V2.42: A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users[J]. Scanning, 2007, 29(1):92-101.[12] Yu G Y, Fan X W, Zhang J Y, et al. The exciton tunneling in ZnCdSe/ZnSe asymmetric double quantum well[J]. J. Electron. Mater.,1998, 27(9):1007-1009.[13] Yu G Y, Fan X W, Zhang J Y, et al. Laser action in ZnCdSe/ZnSe asymmetric double-quantum-well[J]. Solid State Commun.,1999, 110(1):127-130.[14] Su S C, Lu Y M, Xing G Z, et al. Spontaneous and stimulated emission of ZnO/Zn0.85Mg0.15O asymmetric double quantum wells[J]. Superlattices and Microstructures,2010, 48(5):485-490.
0
浏览量
241
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621