浏览全部资源
扫码关注微信
1. 兰州大学物理学院 微电子研究所,甘肃 兰州,730000
2. 兰州大学 磁学与磁性材料教育部重点实验室,甘肃 兰州,730000
收稿日期:2013-02-08,
修回日期:2013-03-08,
网络出版日期:2013-03-22,
纸质出版日期:2013-05-10
移动端阅览
陈德强, 姚博, 吕文理, 高鹏杰, 彭应全. 基于酞菁钯和C<sub>60</sub>的异质结有机光敏场效应管[J]. 发光学报, 2013,34(5): 629-633
CHEN De-qiang, YAO Bo, LYU Wen-li, GAO Peng-jie, PENG Ying-quan. Heterojunction Photoresponsive Organic Field-effect Transistors Based on Palladium Phthalocyanine and C<sub>60</sub>[J]. Chinese Journal of Luminescence, 2013,34(5): 629-633
陈德强, 姚博, 吕文理, 高鹏杰, 彭应全. 基于酞菁钯和C<sub>60</sub>的异质结有机光敏场效应管[J]. 发光学报, 2013,34(5): 629-633 DOI: 10.3788/fgxb20133405.0629.
CHEN De-qiang, YAO Bo, LYU Wen-li, GAO Peng-jie, PENG Ying-quan. Heterojunction Photoresponsive Organic Field-effect Transistors Based on Palladium Phthalocyanine and C<sub>60</sub>[J]. Chinese Journal of Luminescence, 2013,34(5): 629-633 DOI: 10.3788/fgxb20133405.0629.
采用酞菁钯(PdPc)和C
60
两种有机半导体材料
通过真空热蒸镀法以不同的沉积顺序制备了两种不同结构的平面异质结有机光敏场效应管
并对这两种结构器件的光敏特性进行比较。在波长655 nm、光强100 mW/cm
2
的光照条件下
结构为n
+
-Si/SiO
2
/PdPc/C
60
/Al(S
&
D) (PdPc/C
60
-OFET)器件的最大光暗比为210
3
光响应度为3 mA/W;而结构为n
+
-Si/SiO
2
/C
60
/PdPc/Al(S
&
D) (C
60
/PdPc-OFET)器件的最大光暗比为310
3
光响应度为11mA/W。实验结果表明C
60
/PdPc-OFET可以获得更好的光敏特性。
Heterojunction photoresponsive organic field-effect transistors (PhotOFETs) based on palladium phthalocyanine (PdPc) and C
60
were fabricated. PhotOFETs with the structure n
+
-Si/SiO
2
/C
60
/PdPc/Al(S
&
D) (C
60
/PdPc-OFET) exhibit a higher photosensitivity and photoresponsivity than that with the structure n
+
-Si/SiO
2
/PdPc/C
60
/Al(S
&
D) (PdPc/C
60
-OFET). The origin for this result is the high mobility of C
60
and the well-matched LUMO levels between PdPc and C
60
. The maximum photosensitivity and the photoresponsivity of the C
60
/PdPc-OFET are 310
3
and 11 mA/W while those of PdPc/C
60
-OFET are 210
3
and 3 mA/W under the light source with a power density of 100 mW/cm
2
and emission centered at 655 nm.
Roman L S, Andersson M R, Yohannes T, et al. Photodiode performance and nanostructure of polythiophene/C60 blends [J]. Adv. Mater., 2004, 9(15):1164-1168.[2] Tanaka H, Yasuda T, Fujita K, et al. Transparent image sensors using an organic multilayer photodiode [J]. Adv. Mater., 2006, 18(17):2230-2233.[3] Zukawa T, Naka S, Okada H, et al. Organic heterojunction phototransistor [J]. J. Appl. Phys., 2002, 91(3):1171-1174.[4] Marjanovi c ' N, Singh T B, Dennler G, et al. Photoresponse of organic field-effect transistors based on conjugated polymer/fullerene blends [J]. Org. Electron., 2006, 7(4):188-194.[5] Xie J P, Lv W L, Yang T, et al. The Photoresponsive organic field-effect transistors based on copper phthalocyanine [J]. Chin. J. Lumin.(发光学报), 2012, 33(9):991-995 (in Chinese).[6] Mukherjee B, Mukherjee M, Choi Y, et al. Control over multifunctionality in optoelectronic device based on organic phototransistor [J]. ACS Appl. Mater. Interf., 2010, 2(6):1614-1620.[7] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells [J]. Adv. Funct. Mater., 2001, 11(1):15-26.[8] Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency [J]. Adv. Mater., 2006,18(6):789-794.[9] Ng T N, Wong W S, Chabinyc M L, et al. Flexible image sensor array with bulk heterojunction organic photodiode [J]. Appl. Phys. Lett., 2008, 92(21):213303-1-3.[10] Heremans P, Cheyns D, Rand B P. Strategies for increasing the efficiency of heterojunction organic solar cells:Material selection and device architecture [J]. Acc. Chem. Res., 2009, 42(11):1740-1747.[11] Kim I, Haverinen H M, Li J, et al. Enhanced power conversion efficiency of p-i-n type organic solar cells by employing a p-layer of palladium phthalocyanine [J]. Appl. Phys. Lett., 2010, 97(20):203301-1-3.[12] Sakurai T, Ohashi T, Kitazume H, et al. Structural control of organic solar cells based on nonplanar metallophthalocyanine/C60 heterojunctions using organic buffer layers [J]. Org. Electron., 2011, 12(6):966-973.[13] Kim I, Haverinen H M, Wang Z, et al. Efficient organic solar cells based on planar metallophthalocyanines [J]. Chem. Mater., 2009, 21(18):4256-4260.[14] Itaka K, Yamashiro M, Yamaguchi J, et al. High mobility C60 field effect transistors fabricated on molecular wetting controlled substrates [J]. Adv. Mater., 2006, 18(13):1713-1716.[15] Brown R J C, Kucernak A R, Long N J, et al. Spectroscopic and electrochemical studies on platinum and palladium phthalocyanines [J]. New J. Chem., 2004, 28(6):676-680.[16] Hamilton M C, Martin S, Kanicki J. Thin-film organic polymer phototransistors [J]. IEEE Trans. Electron. Dev., 2004, 51(6):877-885.[17] Wang J, Wang H, Yan X, et al. Heterojunction ambipolar organic transistors fabricated by a two-step vacuum-deposition process [J]. Adv. Funct. Mater., 2006, 16(6):824-830.[18] Takahashi N, Maeda A, Uno K, et al. Output properties of C60 field-effect transistors with different source/drain electrodes [J]. Appl. Phys. Lett., 2007, 90(8):083503-1-3.[19] Kushto G P, Makinen A, Lane P A. Organic photovoltaic cells using group 10 metallophthalocyanine electron donors [J]. IEEE J. Sel. Top. Quant., 2010, 16(6):1552-1559.
0
浏览量
124
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构