浏览全部资源
扫码关注微信
广东省微纳光子功能材料与器件重点实验室 华南师范大学光电子材料与技术研究所,广东 广州,510631
收稿日期:2013-02-08,
修回日期:2013-04-02,
网络出版日期:2013-03-22,
纸质出版日期:2013-05-10
移动端阅览
李梅娇, 李凯, 朱明军, 郭志友, 孙慧卿. 近紫外380 nm发光二极管的量子阱结构优化[J]. 发光学报, 2013,34(5): 623-628
LI Mei-jiao, LI Kai, ZHU Ming-jun, GUO Zhi-you, SUN Hui-qing. Structure Optimization of Multiple Quantum Wells in Near Ultraviolet Light Emitting Diodes with 380 nm Wavelength[J]. Chinese Journal of Luminescence, 2013,34(5): 623-628
李梅娇, 李凯, 朱明军, 郭志友, 孙慧卿. 近紫外380 nm发光二极管的量子阱结构优化[J]. 发光学报, 2013,34(5): 623-628 DOI: 10.3788/fgxb20133405.0623.
LI Mei-jiao, LI Kai, ZHU Ming-jun, GUO Zhi-you, SUN Hui-qing. Structure Optimization of Multiple Quantum Wells in Near Ultraviolet Light Emitting Diodes with 380 nm Wavelength[J]. Chinese Journal of Luminescence, 2013,34(5): 623-628 DOI: 10.3788/fgxb20133405.0623.
模拟分析了有源区不同垒层对380 nm近紫外发光二极管的内量子效率、电子空穴浓度分布、辐射复合效率等产生的影响。有源区垒层材料分别选用GaN、Al
0.1
Ga
0.9
N、Al
0.1
Ga
0.9
N/Al
0.15
Ga
0.85
N/Al
0.1
Ga
0.9
N
其中3层AlGaN的厚度比分别为6 nm/8 nm/6 nm和7 nm/6 nm/7 nm。对比分析发现
与GaN垒层相比
选用AlGaN系列垒层可以将更多的载流子限制在有源区内
空穴浓度可以提高近一个数量级
辐射复合效率可以提高2~10倍;3层AlGaN垒层相对于单一AlGaN垒层
载流子分布更加均匀
辐射复合效率可以提高7倍以上
内量子效率可以提高14.5%;采用不同厚度比的3层AlGaN垒层结构可以微调能带的倾斜程度
进一步减小极化效应。可以调节合适的厚度比减小极化效应对于载流子分布及内量子效率的影响。
The influence of multiple quantum wells with different barriers on the characteristics of the near ultraviolet light emitting diodes was numerically investigated. Using single GaN
single Al
0.1
Ga
0.9
N
trilaminar Al
0.1
Ga
0.9
N/Al
0.15
Ga
0.85
N/Al
0.1
Ga
0.9
N as barriers to study the characteristics of internal quantum efficiency
carriers concentration and radiative recombination rate. For trilaminar Al
0.1
Ga
0.9
N/ Al
0.15
Ga
0.85
N/Al
0.1
Ga
0.9
N barrier
choose two different thickness ratio
6 nm/8 nm/6 nm and 7 nm/6 nm/7 nm. The simulation results show that LEDs with AlGaN barriers have better performance than GaN barrier LED. For AlGaN barrier LEDs
more carriers can be confined in active region
especially hole concentration
can improve one order of magnitude approximately. The radiative recombination rate can increase 2~10 times. Compared with single AlGaN barrier LED
in trilaminar AlGaN barrier LEDs the carriers concentration is more uniform. And the radiative recombination rate increases about 7 times
the internal quantum efficiency improves 14.5%. The different thickness ratio of trilaminar AlGaN barrier LED can fine adjust the inclination of energy band
then reduce the negative effects on carriers concentration and internal efficiency caused by polarization.
Strite S, Morkoc H. GaN, AlN, and InN: A review [J]. J. Vac. Sci. Technol. B, 10(4):1237-1267.[2] Pearton S J, Zolper J C, Shul R J, et al. GaN:Processing, defects, and devices [J]. J. Appl. Phys., 1999, 86(1):1-78.[3] Jain S C, Willander M, Narayan J, et al. Ⅲ-nitrides:Growth, characterization, and properties [J]. J. Appl. Phys., 2000, 87(3):965-1007.[4] Kong L,Gan S C,Hong G Y,et al. Luminescence properties of YAG:Ce co-doped with Pr3+or Sm3+ [J]. Chin. J. Lumin.(发光学报), 2007, 28(3):393-396 (in Chinese).[5] Pan Y X, Wang W, Liu G K, et al. Correlation between structure variation and luminescence red shift in YAG:Ce [J]. J. Alloys Compd., 2009, 488(2):638-642.[6] Song G H, Jiang Bin, Miao J W,et al. White LEDs from near-ultraviolet chip precoated with RGB phosphor [J]. J. Optoelectronics·Laser (光电子·激光), 2011, 22(12):1779-1782 (in Chinese).[7] Kwon K H, Im W B, Jang H S, et al. Luminescence properties and energy transfer of site-sensitive Ca6-x-yMgx-z(PO4)4: Eu2+y, Mn2+z phosphors and their application to near-UV LED-based white LEDs [J]. Inorg. Chem., 2009, 48(11):11525-11532.[8] Chiaria S, Furno E, Goano M, et al. Design criteria for near-ultraviolet gan-based light-emitting diodes [J]. IEEE Trans. Electron Dev., 2010, 57(1):60-70.[9] Yu S F, Lin R M, Chang S J, et al. Efficiency droop characteristics in InGaN-based near ultraviolet-to-blue light-emitting diodes [J]. Appl. Phys. Exp., 2012, 5(2):022102-1-3.[10] Kohno T, Sudo Y, Yamauchi M, et al. Internal quantum efficiency and nonradiative recombination rate in InGaN-based near-ultraviolet light-emitting diodes [J]. Jpn. J. Appl. Phys., 2012, 51(7):072102-1-7.[11] Kuo Y K, Shih Y H, Tsai M C, et al. Improvement in electron overflow of near-ultraviolet InGaN leds by specific design on last barrier [J]. IEEE Photon. Technol. Lett., 2011, 23(21):1630-1632.[12] Kuo Y K, Chen Y H, Chang J Y, et al. Numerical analysis on the effects of bandgap energy and polarization of electron blocking layer in near-ultraviolet light emitting diodes [J]. Appl. Phys. Lett., 2012, 100(4):043513-1-3.[13] Knauer A, Wenzel H, Kolbe T, et al. Effect of the barrier composition on the polarization fields in near UV InGaN light emitting diodes [J]. Appl. Phys. Lett., 2008, 92(19):191912-1-3.[14] Fu Y K, Jiang R H, Lu Y H. The effect of trimethylgallium flows in the AlInGaN barrier on optoelectronic characteristics of near ultraviolet light-emitting diodes grown by atmospheric pressure metalorganic vapor phase epitaxy [J]. Appl. Phys. Lett., 2011, 98(12):121115-1-3.[15] Tu P M, Chang C Y, Huang S C, et al. Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier [J]. Appl. Phys. Lett., 2011, 98(21):211107-1-3.[16] Kuo Y K,, Wang T H, Chang J Y. Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers [J]. Appl. Phys. Lett., 2012, 100(3):031112-1-3.
0
浏览量
176
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构