浏览全部资源
扫码关注微信
燕山大学电气工程学院,河北 秦皇岛,066004
收稿日期:2013-01-17,
修回日期:2013-03-02,
网络出版日期:2013-03-15,
纸质出版日期:2013-05-10
移动端阅览
李志全, 杜艺莹, 孙宇超, 童凯, 王志斌. 波导随机散射系统的激光发射[J]. 发光学报, 2013,34(5): 617-622
LI Zhi-quan, DU Yi-ying, SUN Yu-chao, TONG Kai, WANG Zhi-bin. Lasing Emission of Waveguide Random Scattering System[J]. Chinese Journal of Luminescence, 2013,34(5): 617-622
李志全, 杜艺莹, 孙宇超, 童凯, 王志斌. 波导随机散射系统的激光发射[J]. 发光学报, 2013,34(5): 617-622 DOI: 10.3788/fgxb20133405.0617.
LI Zhi-quan, DU Yi-ying, SUN Yu-chao, TONG Kai, WANG Zhi-bin. Lasing Emission of Waveguide Random Scattering System[J]. Chinese Journal of Luminescence, 2013,34(5): 617-622 DOI: 10.3788/fgxb20133405.0617.
提出在随机分布的散射微粒中嵌入环形波导结构以改善随机激光器的随机发射特性。利用时域有限差分法(FDTD)
数值模拟了内嵌环形波导的随机散射系统及其对比结构中光场的分布
得到了各结构的模式频谱。结果显示
本结构只在中心处有激光出射
表明环形波导的存在可以影响随机系统的激光发射
减少激光的模式输出
并在一定程度上增强了出射激光的强度。
A random laser structure is proposed in which we symmetrically embed a toroidal waveguide in the randomly distributed scattering particles. The finite difference time domain (FDTD) method is used to numerically simulate the distribution of the optical filed in the random scattering system embedded with a toroidal waveguide and the corresponding comparative structures
and the modes spectra of each structure are obtained. The results show that there only exists a narrow linewidth lasing emission in the center of system
which verifies that the presence of the toroidal waveguide can influence the lasing emission of the random system
reduce the number of modes
and enhance the lasing intensity to a certain degree.
Cao H, Zhao Y G, Ho S T, et al. Random laser action in semiconductor powder [J]. Phys. Rev. Lett., 1999, 82(11):2278-2281.[2] Wiersma D S. The smallest random laser [J]. Nature, 2000, 406(7):132-133.[3] Cao H, Xu J Y, Seelig E W, et al. Microlaser made of disordered media [J]. Appl. Phys. Lett., 2000, 76(21):2997-2999.[4] Liu J, Liu H. Theoretical investigation on the threshold properties of localized modes in two-dimensional random media [J]. Mod. Opt., 2006, 53(10):1429-1439.[5] Lin Z X, Guo T L, Zhang Y G, et al. Study of the ZnO nanomaterial field-emission cathode array based on graphical growth [J]. Acta Optica Sinica (光学学报), 2010, 30(6):1739-1744 (in Chinese).[6] Wang J X, Ling C D, Han L. Nanocrystalline silicon film passively Q-switched laser diode pumped Nd:YAG/LBO blue laser [J]. Chin. J. Lasers (中国激光), 2010, 37(6):1564-1568 (in Chinese).[7] Meng X G, Fujita K J, Zong Y H, et al. Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles [J]. Appl. Phys. Lett., 2008, 92(20):201112-1-3.[8] Ling Y, Cao H, Burin A L, et al. Investigation of random lasers with resonant feedback [J]. Phys. Rev. A, 2001, 64(6):063808-1-8.[9] Wang K J, Zhang Q Q, Lv J T, et al. Dependence of spectral width of TM-polarization lasing modes on pumping intensity in two-dimensional random media [J]. Acta Physica Sinica (物理学报), 2008, 57(5):2941-2945 (in Chinese).[10] Yu S F, Yuen C, Lau S P, et al. Zinc oxide thin-film random lasers on silicon substrate [J]. Appl. Phys. Lett., 2004, 84(17):3244-3246.[11] Fallert J, Dietz R J B, Sartor J, et al. Co-existence of strongly and weakly localized random laser modes [J]. Nat. Photon., 2009, 3(5):279-282.[12] Watanabe H, Oki Y, Omatsu T. Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer [J]. Appl. Phys. Lett., 2005, 86(15):151123-1-3.[13] Yao K, Feng G Y, Yang L L, et al. Spatial Localized distribution of modes in two-dimension random medium [J]. Spectros. Spect. Anal.(光谱学与光谱分析), 2012, 32(10):2743-2748 (in Chinese).[14] Liang H K, Yu S F, Li X F, et al. An index-guided ZnO Random laser array [J]. IEEE, 2011, 23(8):522-524.[15] Fujiwara H, Hamabata Y, Sasaki K. Numerical analysis of resonant and lasing properties at a defect region within a random structure [J]. Opt. Exp., 2009, 17(5):3970-3977.[16] Cao H, Jiang X, Ling Y, et al. Mode repulsion and mode coupling in random lasers [J]. Phys. Rev. B, 2003, 67(16):161101-1-4.
0
浏览量
214
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构