浏览全部资源
扫码关注微信
1. 中国科学院 合肥智能机械研究所,安徽 合肥,230031
2. 中国科学院 安徽光学精密机械研究所,安徽 合肥,230031
3. 法国特鲁瓦技术大学, 法国 特鲁瓦,10000
4. 安徽农业大学 信息与计算机学院,安徽 合肥,230036
收稿日期:2013-01-10,
修回日期:2013-03-01,
网络出版日期:2013-03-15,
纸质出版日期:2013-05-10
移动端阅览
郑守国, 李淼, 张健, 曾新华, Jerome Plain, Renaud Bachelot, 乔雷. 光纤聚合物探针在非均匀电磁场下的银纳米颗粒极化效应[J]. 发光学报, 2013,34(5): 605-610
ZHENG Shou-guo, LI Miao, ZHANG Jian, ZENG Xin-hua, Jerome Plain, Renaud Bachelot, QIAO Lei. Inhomogeneous Electromagnetic Field Polarization Enhancement of Silver Nanoparticles Induced by A Fiber Optics Polymer Probe[J]. Chinese Journal of Luminescence, 2013,34(5): 605-610
郑守国, 李淼, 张健, 曾新华, Jerome Plain, Renaud Bachelot, 乔雷. 光纤聚合物探针在非均匀电磁场下的银纳米颗粒极化效应[J]. 发光学报, 2013,34(5): 605-610 DOI: 10.3788/fgxb20133405.0605.
ZHENG Shou-guo, LI Miao, ZHANG Jian, ZENG Xin-hua, Jerome Plain, Renaud Bachelot, QIAO Lei. Inhomogeneous Electromagnetic Field Polarization Enhancement of Silver Nanoparticles Induced by A Fiber Optics Polymer Probe[J]. Chinese Journal of Luminescence, 2013,34(5): 605-610 DOI: 10.3788/fgxb20133405.0605.
介绍了光纤探针的制作流程及纳米颗粒的吸附方法
利用时域有限差分法对光纤探针的局域非均匀场下银纳米颗粒增强效应进行了数值模拟。首先
分析了不同形状的光纤聚合物探针尖端电场分布情况
为纳米颗粒的极化效应研究提供了参考;其次
模拟与仿真了纳米颗粒的半径、与探针间的距离对单个银纳米颗粒极化效应的影响;最后
以两个银纳米颗粒为例讨论了颗粒相对位置对极化效果的影响
并证明了光纤探针顶端以外的银纳米颗粒对电场的极化效应没有贡献。本文的仿真结果为光纤探针的制备以及其表面银纳米颗粒的吸附提供了理论支持。
The process of optical fiber probe production was introduced in this paper
as well as the attachment of silver nanoparticles
the enhanced effect of silver nanoparticles in fiber-optic probe inhomogeneous electromagnetic field of was simulated using the finite difference time domain method. Firstly
the electric field distribution of different shapes of the fiber polymer probe tip was discussed
and it provided a reference for the research of nanoparticles polarization effects; Secondly
the polarization affecting factors of single nanoparticle were simulated
the radius of silver nanoparticle and its distance to the probe were taken into consideration; Finally
taking two silver nanoparticles for example
the polarization effect of particles relative position were discussed
which proved that the silver nanoparticles outside the top of the fiber probe do not contribute to the polarization effect. The simulation results of this paper provided a theoretical support for the production of the fiber-optic probe and the attachment of metal nanoparticles.
Xuan X Y, Xu S P, Liu Y, et al. A long-range surface plasmon resonance/ probe/ silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced raman scattering [J]. J. Phys. Chem. Lett., 2012, 3(19):2773-2778.[2] Ding W, Bachelot R, Kostcheev S, et al. Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles [J]. J. Appl. Phys., 2010, 108(12):124314-1-6[3] Tabor C, Murali R, Mahmoud M, et al. On the use of plasmonic nanoparticle pairs as a plasmon ruler:The dependence of the near-field dipole plasmon coupling on nanoparticle size and shape [J]. J. Phys. Chem. A, 2009, 113(10):1946-1953.[4] Yang Y Y, Zhang Y L, Zhao Z S, et al. Broad-bandwidth and ultrafast electromagnetic response of coupled bimetal nanoantennas in few-cycle laser applications[J]. Acta Physica Sinica (物理学报), 2012, 61(1):014207-1-7 (in Chinese).[5] Hatab N A, Hsueh C H, Gaddis A L, et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced raman spectroscopy [J]. Nano Lett., 2010, 10(12):4952-4955.[6] Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature, 2010, 464(7287):392-395.[7] Talley C E, Jackson J B, Oubre C. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates [J]. Nano Lett., 2005, 5(8):1569-1574.[8] Kalkbrenner T, Ramstein M, Mlynek J, et al. A single gold particle as a probe for apertureless scanning near-field optical microscopy [J]. J. Microsc., 2001, 202 (Part I):72-76.[9] Foteinopoulou S, Vigneron J P, Vandenbem C. Optical near-field excitations on plasmonic nanoparticle-based structures [J]. Opt. Exp., 2007, 15(7):4253-4267.[10] Zeng X H, Plain J, Jradi S, et al. Integration of polymer microlens array at fiber bundle extremity by photopolymerization [J]. Opt. Exp., 2011 19(6):4805-4814.[11] Zeng X H, Jradi S, Proust J, et al. Direct functionalization of an optical fiber by a plasmonic nanosensor [J]. Opt. Lett., 2011, 36(15):2919-2921.[12] Zeng X H, Plain J, Jradi S, et al. High speed sub-micrometric microscopy using optical polymer microlens [J]. Chin. Opt. Lett., 2009, 7(10):901-903.[13] Zheng S G, Zeng X H, Luo W, et al. Rapid fabrication of micro-nanometric tapered fiber lens and characterization by a novel scanning optical microscope with submicron resolution [J]. Opt. Exp., 2013, 21(1):30-38.
0
浏览量
120
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构