
浏览全部资源
扫码关注微信
1. 太原理工大学 物理与光电工程学院,山西 太原,030024
2. 太原理工大学 新材料工程技术研究中心,山西 太原,030024
3. 太原理工大学 新材料界面科学与工程教育部重点实验室,山西 太原,030024
4. 山西大同大学 碳材料研究所,山西 大同,037009
收稿:2013-01-08,
修回:2013-4-1,
网络出版:2013-03-08,
纸质出版:2013-05-10
移动端阅览
郭颂, 杜晓刚, 刘晓云, 刘慧慧, 王华, 郝玉英, 许并社, 赵建国, 郭鹍鹏. 氧化石墨烯作为共蒸镀掺杂材料在OLED中的应用[J]. 发光学报, 2013,34(5): 595-599
GUO Song, DU Xiao-gang, LIU Xiao-yun, LIU Hui-hui, WANG Hua, HAO Yu-ying, XU Bing-she, ZHAO Jian-guo, GUO Kun-peng. Graphene Oxide as Doping Material for Assembling OLEDs <em>via</em> Thermal Co-evaporation with NPB and Alq<sub>3</sub>[J]. Chinese Journal of Luminescence, 2013,34(5): 595-599
郭颂, 杜晓刚, 刘晓云, 刘慧慧, 王华, 郝玉英, 许并社, 赵建国, 郭鹍鹏. 氧化石墨烯作为共蒸镀掺杂材料在OLED中的应用[J]. 发光学报, 2013,34(5): 595-599 DOI: 10.3788/fgxb20133405.0595.
GUO Song, DU Xiao-gang, LIU Xiao-yun, LIU Hui-hui, WANG Hua, HAO Yu-ying, XU Bing-she, ZHAO Jian-guo, GUO Kun-peng. Graphene Oxide as Doping Material for Assembling OLEDs <em>via</em> Thermal Co-evaporation with NPB and Alq<sub>3</sub>[J]. Chinese Journal of Luminescence, 2013,34(5): 595-599 DOI: 10.3788/fgxb20133405.0595.
通过共蒸镀掺杂的方法
分别用氧化石墨烯和NPB掺杂作为空穴传输层以及氧化石墨烯和Alq
3
掺杂作为电子传输层和发光层
制备了两种不同的有机电致发光器件。器件性能测试结果表明:相对于未掺杂的参比器件
氧化石墨烯与NPB共蒸镀掺杂的器件性能降低
与Alq
3
共蒸镀掺杂的器件性能提高。其中
氧化石墨烯掺杂量为Alq
3
的10%时
器件发光亮度为掺杂前的1.2倍
电流效率为掺杂前的2倍。这一工作为进一步提高OLED性能提供了新的途径。
Graphene oxide was explored as doping material that doped into hole transporting layer (NPB) and electron transporting layer (Alq
3
) via thermal co-evaporation respectively to fabricate two types of OLED devices. The experimental results indicated that thermal co-evaporation of graphene oxide with Alq
3
act as electron transporting layer can improve the device performance while with NPB as hole transporting layer decrease the performance. And it turns out that device doped 10% graphene oxide in Alq
3
layer exhibited 1.2 fold higher of luminance and 2 fold higher of current efficiency than that of updoped one.
Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device [J]. Science, 2005, 267 (5202):1332-1334.[2] Xie X D, Hao Y Y, Zhang R G, et al. Lithium-doped tris(8-hydroxyquinoline) aluminum studied by density functional theory [J]. Acta Phys. Sinica (物理学报), 2012, 61(12):127201-1-7 (in Chinese).[3] Zhao Y B, Chen J S, Ma D G. Realization of high efficiency orange and white organic light emitting diodes by introducing an ultra-thin undoped orange emitting layer [J]. Appl. Phys. Lett., 2011, 99(16):163303-1-3.[4] Zhang S M, Chen Y, Wang X H, et al. White organic light-emitting diodes with high color rendering index using phosphorescent sensitizer and blue fluorescent emitter [J]. Chin。 J. Lumin.(发光学报), 2012, 33(1):97-101 (in Chinese).[5] Kamtekar K T, Monkman A P, Bryce M R. Recent advances in white organic light-emitting materials and devices (WOLEDs) [J]. Adv. Mater., 2010, 22(5):572-582.[6] Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12):913-915.[7] Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organic thin film [J]. Appl. Phys., 1989, 65(9):3610-3616.[8] Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698):151-154.[9] Choudhury K R, Yoon J H, So F. LiF as an n-dopant in tris(8-hydroxyquinoline) aluminum thin films [J]. Adv. Mater., 2008, 20(8):1456-1461.[10] Zhang R, Li C N, Li T, et al. Fabrication of inverted bottom organic light-emitting device with Li3N n-type doping electron injecting layer [J]. Acta Photonica Sinica (光子学报), 2011, 40(2):199-203 (in Chinese).[11] Li D, Kaner R B. Graphene-based materials [J]. Science, 2008, 320(5880):1170-1171.[12] Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nature Nanotechnol., 2009, 4(4):217-224.[13] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene:Versatile building blocks for carbon-based materials [J]. Small, 2010, 6(6):711-723.[14] Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces [J]. J. Am. Chem. Soc., 2010, 132(23):8180-8186.[15] Kim J, Cote L J, Kim F, et al. Visualizing graphene based sheets by fluorescence quenching microscopy [J]. J. Am. Chem. Soc., 2010, 132(1):260-267.[16] Cote L J, Kim J, Zhang Z, et al. Tunable assembly of graphene oxide surfactant sheets: Wrinkles, overlaps and impacts on thin film properties [J]. Soft Matter., 2010, 6(24):6096-6101.[17] Tung V C, Kim J, Cote L J, et al. Sticky interconnect for solution-processed tandem solar cells [J]. J. Am. Chem. Soc., 2011, 133(24):9262-9265.[18] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457(7230):706-710.[19] Wu J B, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes [J]. ACS Nano, 2010, 4(1):43-48.[20] Liu Z F, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material:Graphene [J]. Adv. Mater., 2008, 20(20):3924-3930.[21] Daniela C M, Dmitry V K, Jacob M B, et al. Improved synthesis of graphene oxide [J]. ACS Nano, 2010, 4(8):4806-4814.
0
浏览量
137
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621