浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,130033
2. 北京化工大学 理学院 北京,100029
收稿日期:2013-02-27,
修回日期:2013-03-21,
纸质出版日期:2013-05-10
移动端阅览
孙晓绮, 孟庆华, 孟庆云. 铕掺杂氧化锌纳米棒阵列材料的制备及光学性能研究[J]. 发光学报, 2013,34(5): 573-578
SUN Xiao-qi, MENG Qing-hua, MENG Qing-yun. Fabrication and Optical Properties of Eu-doped ZnO Nanorod Arrays[J]. Chinese Journal of Luminescence, 2013,34(5): 573-578
孙晓绮, 孟庆华, 孟庆云. 铕掺杂氧化锌纳米棒阵列材料的制备及光学性能研究[J]. 发光学报, 2013,34(5): 573-578 DOI: 10.3788/fgxb20133405.0573.
SUN Xiao-qi, MENG Qing-hua, MENG Qing-yun. Fabrication and Optical Properties of Eu-doped ZnO Nanorod Arrays[J]. Chinese Journal of Luminescence, 2013,34(5): 573-578 DOI: 10.3788/fgxb20133405.0573.
通过低温化学方法在多孔硅柱状阵列(NSPA)衬底上制备得到铕掺杂ZnO (ZnO:Eu)纳米棒阵列结构。实验方法简单、条件温和
有效地实现了ZnO纳米棒和铕离子之间的能量转移
丰富了ZnO纳米半导体材料体系的发光。X射线衍射以及X射线光电子能谱证实铕离子成功掺杂进了ZnO晶体中。室温荧光光谱测试结果表明:ZnO:Eu纳米棒阵列可实现从紫外光到蓝-绿光的宽谱带发射
其中发光中心位于~380 nm的紫外光源于ZnO的带边发射
位于450~570 nm的蓝-绿光源于ZnO的本征缺陷发光
而位于~615 nm的红光发光则源于铕离子核外电子4f壳层结构。同时借助于能带示意图对光致发光机理进行了分析。
The Eu-doped ZnO (ZnO:Eu) nanorod arrays have been successfully synthesized on nanoporous silicon pillar array (NSPA) substrates by hydrothermal method. The effective energy transfer from ZnO host to the doping ions has been revealed. The ZnO:Eu nanorod arrays could enrich the emissions of ZnO nanostructure
moreover
the fabrication method is simple under mild reaction condition. The presence of trivalent europium ions in ZnO crystal lattice has been confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Under the ultraviolet (UV) laser excitation
ZnO-related UV and near band energy blue-green emission and Eu
3+
-related red emission were observed
which were attributed to the emission of ZnO
the band edge transition
the intrinsic defects and the Eu
3+
ions transition
respectively. Based on the energy band diagram
the photoluminescence (PL) mechanism has been discussed
as well as energy transfer occurs from ZnO host to Eu
3+
ions through intrinsic defects states of ZnO in ZnO:Eu nanorods structure.
Zhang J L, Hong G Y. Progress on the study of nanoscale rare earth luminescent materials [J]. Chin. J. Lumin. (发光学报), 2005, 26(3):285-293 (in Chinese).[2] Liu R H, Huang X W, He H Q, et al. Prospect and advances of technique and market of rare earth luminescent material [J]. J. Chin. RE Soc. (中国稀土学报), 2012, 30(3):265-272 (in Chinese).[3] Bazzi R, Flores M A, Louis C, et al. Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu [J]. Colloid Interf. Sci., 2004, 273(1):191-197.[4] Pradhan A K, Douglas L, Mustafa H, et al. Pulsed-laser deposited Er:ZnO films for 1.54 m emission [J]. Appl. Phys. Lett., 2007, 90(7):0721089-1-3.[5] Park Y K, Han J I, Kwak M G, et al. Effect of coupling structure of Eu on the photoluminescent characteristics for ZnO:EuCl3 phosphors [J]. Appl. Phys. Lett., 1998, 72(6):668-670.[6] Zhang L L, Ling Y W, Zhang L, et al. Synthesis and photoluminescence of Eu-doped ZnO nanopowder [J]. Rare Metal Mater. Eng. (稀有金属材料与工程), 2008, 37(2):370-373 (in Chinese).[7] Wang M, Huang C G, Huang Z, et al. Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method [J]. Opt. Mater., 2009, 31(10):1502-1505.[8] Zhong M Y, Shan G Y, Li Y J, et al. Synthesis and luminescence properties of Eu3+ doped ZnO nanocrystals by a hydrothermal process [J]. Mater. Chem. Phys., 2007, 106(2/3):305-309.[9] Petersen J, Brimont C, Gallart M, et al. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering [J]. J. Appl. Phys., 2010, 107(12):123522-1-6.[10] Yoon H, Wu J H, Min J H, et al. Magnetic and optical properties of monosized Eu-doped ZnO nanocrystals from nanoemulsion [J]. J. Appl. Phys., 2012, 111(7):07B523-1-3.[11] Ishizumi A, Kanemitsu Y. Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemu-lsion method [J]. Appl. Phys. Lett., 2005, 86(25):253106-1-3.[12] Fang Z B, Tan Y S, Gong H X, et al. Transparent conductive Tb-doped ZnO films prepared by RF reactive magnetron sputtering [J]. Mater. Lett., 2005, 59(21):2611-2614.[13] Badalawa W, Matsui H, Osone T, et al. Correlation between structural and luminescent properties of Eu3+ doped ZnO epitaxial layers [J]. J. Appl. Phys., 2011, 109(5):053502-1-7.[14] Chen R, Shen Y Q, Xiao F, et al. Surface Eu-treated ZnO nanowires with efficient red emission [J]. J. Phys. Chem. C, 2010, 114(42):18081-18084.[15] Pauporte T, Pelle F, Viana B, et al. Luminescence of nanostructured Eu3+/ZnO mixed films prepared by electrodeposition [J]. J. Phys. Chem.C, 2007, 111(42):15427-15432.[16] Lin Y R, Yang S S, Song Y T, et al. Visible photoluminescence of ultrathin ZnO nanowire at room temperature [J]. Cryst. Growth Des., 2006, 6(8):1951-1955.[17] Li X J, Hu X, Jia Y, et al. Tunable superstructures in hydrothermally etched iron-passivated porous silicon [J]. Appl. Phys. Lett., 1999, 75(19):2906-2908.[18] Xu H J, Fu X N, Sun X R, et al. Investigations on the structural and optical properties of silicon nanoporous pillar array [J]. Acta Physica Sinica(物理学报), 2005, 54(5):2352-2357 (in Chinese).[19] Chan Y F, Su W, Zhang C X, et al. Electroluminescence from ZnO-nanofilm/ Si-micropillar heterostructure arrays [J]. Opt. Exp., 2012, 20(22):24280-24287.[20] Chan Y F, Xu H J, Cao L, et al. ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study [J]. J. Appl. Phys., 2012, 111(3):033104-1-6.[21] Jing L Q, Xu Z L, Shang J, et al. The preparation and characterization of ZnO ultrafine particles [J]. Mater. Sci. Eng. A, 2002, 332(1-2):356-361.[22] Larachi F, Pierre J, Adnot A, et al. Ce3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts [J]. Appl. Surf. Sci., 2002, 195(1/2/3/4):236-250.[23] Cho E J, Oh S J. Surface valence transition in trivalent Eu insulating compounds observed by photoelectron spectroscopy [J]. Phys. Rev., 1999, 59(24):15613-15616.[24] Zeng X Y, Yuan J L, Zhang L. Synthesis and photoluminescent properties of rare earth doped ZnO hierarchical microspheres [J]. J. Phys. Chem. C, 2008, 112(10):3503-3508.[25] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. J. Appl. Phys., 1996, 79(10):7983-7990.[26] Lin B, Fu Z, Jia Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Appl. Phys. Lett., 2001, 79(7):943-945.[27] Zhang L L, Guo C X, Chen J G, et al. The synthesis of one-dimensional controllable ZnO microrods [J]. Chin. Phys., 2005, 14(3):586-591.
0
浏览量
289
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构