ZHU Jian-zhuo, DU Hui-jing, SU Zi-sheng, ZHU Shi-min, XU Tian-fu. Simulation Study on Influence of The Carrier Mobility on The Performances of Organic Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(4): 463-468
ZHU Jian-zhuo, DU Hui-jing, SU Zi-sheng, ZHU Shi-min, XU Tian-fu. Simulation Study on Influence of The Carrier Mobility on The Performances of Organic Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(4): 463-468 DOI: 10.3788/fgxb20133404.0463.
The influence of the carrier mobility on the performances of organic solar cells was studied using the simulation method. It is found that the mobility influences the carrier generation and transport simultaneously. There is an optimal value both for electron mobility and hole mobility. The mobility larger than the optimal value will lead to a small increase in the short circuit current. The mobility smaller than the optimal value will result in the insufficient dissociation of the photogenerated electron hole pair
and decrease the short circuit current and the fill factor.
关键词
Keywords
references
Li X, Wen S S, He Q H, et al. Effects of electrodes on the optical performance of CuPc/C60 bilayer heterojunction organic solar cells [J]. Chin. J. Lumin.(发光学报), 2012, 33(8):888-894 (in Chinese).[2] Ferguson A J, Blackburn J L, Kopidakis N. Fullerenes and carbon nanotubes as acceptor materials in organic photovoltaics [J]. Mater. Lett., 2013, 90(1):115-125.[3] Liu Y D, Su Z S, Zhuang T J, et al. Significant enhanced performance of organic solar cells with F16CuPc as the anode buffer layer [J]. Chin. J. Lumin.(发光学报), 2011, 32(11):1176-1180 (in Chinese).[4] Wu B, Liu P Y, Li Y W, et al. Electron transport layers of inverted heterojunction organic solar cells [J]. Chin. J. Lumin.(发光学报), 2010, 31(5):753-756 (in Chinese).[5] Koster L J A, Smits E C P, Mihailetchi V D, et al. Device model for the operation of polymer/fullerene bulk heterojunction solar cells [J]. Phys. Rev. B, 2005, 72(8):085205-1-8.[6] Barker J A, Ramsdale C M, Greenham N C. Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices [J]. Phys. Rev. B, 2003, 67(7):075205-1-9.[7] Buxton G A, Clarke N. Computer simulation of polymer solar cells [J]. Modelling Simul. Mater. Sci. Eng., 2007, 15(2):13-26.[8] Koster L J A, Mihailetchi V D, Blom P W M. Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells [J]. Appl. Phys. Lett., 2006, 88(5):052104-1-3.[9] Braun C L. Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production [J]. J. Chem. Phys., 1984, 80(9):4157-4161.[10] Wagenpfahl A, Rauh D, Binder M, et al. S-shaped current-voltage characteristics of organic solar devices [J]. Phys. Rev. B, 2010, 82(11):115306-1-9.[11] Mihailetchi V D, Koster L J, Hummelen A J C. Photocurrent generation in polymer-fullerene bulk heterojunctions [J]. Phys. Rev. Lett., 2004, 93(21):216601-1-4.