浏览全部资源
扫码关注微信
1. 长春理工大学 高功率半导体激光国家重点实验室,吉林 长春,130022
2. 长春理工大学 理学院, 吉林 长春 130022
收稿日期:2012-12-18,
修回日期:2013-01-25,
网络出版日期:2012-12-31,
纸质出版日期:2013-04-10
移动端阅览
杜鸿延, 魏志鹏, 李霜, 楚学影, 方铉, 方芳, 李金华, 陈新影, 王晓华. 表面修饰的ZnS:Mn量子点的发光性质及其对生物分子的检测[J]. 发光学报, 2013,34(4): 421-426
DU Hong-yan, WEI Zhi-peng, LI Shuang, CHU Xue-ying, FANG Xuan, FANG Fang, LI Jin-hua, CHEN Xin-ying, WANG Xiao-hua. Luminescent Properties of Surface Modified ZnS:Mn Quantum Dot and Detection of Biological Molecules[J]. Chinese Journal of Luminescence, 2013,34(4): 421-426
杜鸿延, 魏志鹏, 李霜, 楚学影, 方铉, 方芳, 李金华, 陈新影, 王晓华. 表面修饰的ZnS:Mn量子点的发光性质及其对生物分子的检测[J]. 发光学报, 2013,34(4): 421-426 DOI: 10.3788/fgxb20133404.0421.
DU Hong-yan, WEI Zhi-peng, LI Shuang, CHU Xue-ying, FANG Xuan, FANG Fang, LI Jin-hua, CHEN Xin-ying, WANG Xiao-hua. Luminescent Properties of Surface Modified ZnS:Mn Quantum Dot and Detection of Biological Molecules[J]. Chinese Journal of Luminescence, 2013,34(4): 421-426 DOI: 10.3788/fgxb20133404.0421.
采用水热法制备了ZnS:Mn量子点
探讨了掺杂离子浓度对ZnS:Mn量子点的晶体结构和发光性质的影响。 通过荧光光谱对样品进行表征。结果表明:掺杂离子的摩尔分数达到2%时
ZnS:Mn量子点在595 nm附近的发光最强;继续增加掺杂浓度反而出现荧光猝灭的现象。本文还研究了表面修饰对量子点形貌和发光性质的影响。通过透射电子显微镜(TEM)观察样品的形貌
发现经过3-巯基丙酸(MPA)修饰后的样品表面团聚现象得到改善
并且尺寸单一、单分散性较好
平均粒径约为5 nm。经过修饰后的样品减少了表面非辐射性缺陷中心
使掺杂Mn
2+
所引起的595 nm附近的发射峰强度增大。 将MPA修饰后的ZnS:Mn量子点与牛血清白蛋白(BSA)分子进行生物偶联
并利用BCA法对偶联上的蛋白含量进行定量检测
结果显示经过修饰后的量子点偶联蛋白的能力更强。
ZnS:Mn quantum dots were prepared by hydrothermal method. The effect of the doping concentration of ZnS:Mn quantum dots on crystal structure and luminescent properties was discussed. The quantum dots were characterized by the fluorescence spectroscopy. The results indicated that ZnS:Mn quantum dots exhibited the strongest emission at 595 nm
with 2% doping mole fraction
then with doping concentration increasing
the intensity of luminescent decreased due to the fluorescence quenching phenomenon. The effect of surface modification on the morphologies and luminescent properties of quantum dots were also discussed. Transmission electron microscope (TEM) images indicated that the surface aggregation phenomenon of ZnS:Mn quantum dots was improved with the MPA surface modification
the quantum dots also exhibited single size and good dispersibility properties
the average particle diameter was about 5 nm. In addition
the surface non-radiation defect centers were reduced
which caused emission peak intensity increasing at 595 nm by Mn
2+
doping. The surface modified ZnS:Mn quantum dots were conjugated with bovine serum albumin (BSA) molecules. In BCA detection
the results indicated that the surface modified ZnS:Mn quantum dots had the better biological conjugation property.
Bruchez J M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281(5385):2013-2016.[2] Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281(5383):2016-2018.[3] Lai S L, Cheng S Y, Huang H L, et al. Influence of annealing temperature on properties of ZnS thin films prepared by electron-beam evaporation [J]. Electronic Components and Materials (电子元件与材料), 2010, 29(11):55-57 (in Chinese).[4] Bhargava R N. Doped nanocrystalline materials-physics and applications [J]. J. Lumin., 1996, 70(1/2/3/4/5/6):85-94.[5] Dimitrova V, Tate J. Synthesis and characterization of some ZnS-based thin film phosphors for electroluminescent device applications [J]. Thin Solid Films, 2000, 365(1):134-138[6] Bhargava R N, Gallagher D. Optical properties of manganese-doped nanocrystals of ZnS [J]. Phys. Rev. Lett., 1994, 72(3):416-419.[7] Ma J H, Zhang D, Huang B X, et al. Microstructure and photoluminescent property of ZnS:Mn nanocrystalline [J]. J.Guangxi Teachers Edu. Univ.: Natural Science Edition (广西师范学院学报:自然科学版), 2011, 28(1):45-49 (in Chinese).[8] Wang X F, Xu J J, Chen H Y. A new electrochemiluminescence emission of Mn2+-doped ZnS nanocrystals in aqueous solution [J]. J. Phys. Chem. C, 2008, 112(45):17581-17585.[9] Zou W S, Sheng D, Ge X, et al. Room-temperature phosphorescence chemosensor and rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots [J]. Anal. Chem., 2011, 83(1):30-37[10] Mao L H. Nanometer ZnS Luminescence Materials Preparation and Luminous Property Research. Shanghai: Shanghai Normal University, 2005 (in Chinese).[11] Kar S, Chaudhuri S. Controlled synthesis and photoluminescence properties of ZnS nanowires and nanoribbons [J]. J. Phys. Chem. B, 2005, 109(8):3298-3302[12] Duan C, Meyerhoff M E. Immobilization of proteins on gold coated porous membranes via an activated self-assembled monolayer of thioctic Acid [J]. Mikrochim. Acta, 1995, 117(3/4):195-206.[13] Das M, Mishra D, Maiti T K, et al. Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent:New, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting [J]. Nanotechnology, 2008, 19(41):415101-1-5.
0
浏览量
130
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构