浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2. 大连民族学院 物理与材料工程学院, 辽宁 大连 116600
收稿日期:2012-11-12,
修回日期:2013-01-09,
网络出版日期:2012-11-30,
纸质出版日期:2013-04-10
移动端阅览
肖宇, 丛妍, 赵宇飞, 韩龙, 董文昌, 付悦, 李斌. 三维有序大孔ZrO<sub>2</sub>的制备及其光学性质[J]. 发光学报, 2013,34(4): 406-410
XIAO Yu, CONG Yan, ZHAO Yu-fei, HAN Long, DONG Wen-chang, FU Yue, LI Bin. Synthesis and Photoluminescence Characterization of Three-dimensional Ordered Macroporous ZrO<sub>2</sub>[J]. Chinese Journal of Luminescence, 2013,34(4): 406-410
肖宇, 丛妍, 赵宇飞, 韩龙, 董文昌, 付悦, 李斌. 三维有序大孔ZrO<sub>2</sub>的制备及其光学性质[J]. 发光学报, 2013,34(4): 406-410 DOI: 10.3788/fgxb20133404.0406.
XIAO Yu, CONG Yan, ZHAO Yu-fei, HAN Long, DONG Wen-chang, FU Yue, LI Bin. Synthesis and Photoluminescence Characterization of Three-dimensional Ordered Macroporous ZrO<sub>2</sub>[J]. Chinese Journal of Luminescence, 2013,34(4): 406-410 DOI: 10.3788/fgxb20133404.0406.
以聚苯乙烯(PS)微球作为模板剂
采用溶胶-凝胶及煅烧处理等方法制备了三维有序大孔ZrO
2
材料。通过X射线衍射(XRD)以及扫描电镜(SEM)对其结构和形貌进行了表征。结果表明所制备的ZrO
2
材料为孔径约为180 nm的高度有序、堆叠紧密的三维有序大孔结构(3DOM)。对3DOM ZrO
2
的光谱分析表明:在宽禁带的ZrO
2
材料中存在着本征缺陷发光(氧空位缺陷)和杂质缺陷(主要杂质为TiO
2
)发光
掺杂浓度与基质的晶相结构对两种发光起到了至关重要的作用。对发光过程提出了简单的机理模型。
Three-dimensionally ordered macroporous (3DOM) ZrO
2
inverse opal materials prepared by polystyrene (PS) colloidal crystal templating
using the sol-gel method
were successfully fabricated. The structure of 3DOM ZrO
2
was determined by X-ray diffraction (XRD) and scanning electron microscope(SEM). The results show that the produced ZrO
2
are arranged orderedly macropores with average diameter of 180 nm. The spectra show both intrinsic F centers emitter and impurity emitter exist in wide band gap ZrO
2
.The mechanism of the phosphorescence was formulated using a simplified scheme.
Litovsky E, Shapiro M, Shavit A. Gas pressure and temperature dependences of thermal conducsivity of porous ceramic materials [J]. J. Am. Ceram. Soc., 1996, 79(5):1366-1376.[2] Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon structures with three-dimensional periodicity at optical wavelengths [J]. Science, 1998, 282(5390):897-901.[3] Holland B T, Blanford C F, Do T, et al. Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites [J]. Chem. Mater., 1999, 11(3):795-805.[4] Zhang Y Q, Hao X, Wei Q B, et al. Photochemical behavior of polystyrene photonic crystals film [J]. Chem. J. Chin. Univ.(高等学校化学学报), 2011, 3(7):1634-1638 (in Chinese).[5] Wang W, Song H W, Liu Q, et al. Modified optical properties in a samarium doped titania inverse opal [J]. Opt. Lett., 2010, 35(9):1449-1451.[6] Velev O D, Jede T A, Lobo R F, et al. Porous silica via colloidal crystallization [J]. Nature, 1997, 389:447-448.[7] Li X W, Yan C H, Zhou C D, et al. Emulsifier-free emulsion copolymerization of styrene with sodium stryenesulfonate [J]. Functional Polymer (功能高分子学报), 1989, 2(4):267-274 (in Chinese).[8] Cong Y, Li B, Liu D P, et al. Influence of phase transition on photoluminescence properties of trace Ti doped nano-zirconia [J]. Chin. J. Inorg. Chem.(无机化学学报), 2011, 26(12):2233-2236 (in Chinese).[9] León C, Lucía M L, Santamaría J. Correlated ion hopping in single-crystal yttria-stabilized zirconia [J]. Phys. Rev. B, 1997, 55(2):882-887.[10] Paiverneker V R, Petelin A N, Crowne F J, et al. Color-center-induced band-gap shift in yttria-stabilized zirconia [J].Phys. Rev. B, 1989, 40(12):8555-8557.[11] Petrik N G, Taylor D P, Orlando T M. Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals [J]. J. Appl. Phys., 1999, 85(9):6770-6776.[12] Shukla S, Seal S. Mechanisms of room temperature metastable tetragonal phase stabilization in zirconia [J]. Int. Mater. Rev., 2005, 50(1):45-64.[13] Cong Y, Li B, Yue S M, et al. Effect of oxygen vacancy on phase transition and photoluminescence properties of nanocrystalline zirconia synthesized by the one-pot reaction [J]. J. Phys. Chem. C, 2009, 113(31):13974-13978.
0
浏览量
91
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构