浏览全部资源
扫码关注微信
大连海事大学 物理系, 辽宁 大连 116026
收稿日期:2013-01-01,
修回日期:2013-02-27,
网络出版日期:2013-01-25,
纸质出版日期:2013-04-10
移动端阅览
李晶晶, 孙佳石, 张金苏, 李香萍, 李磊, 程丽红, 仲海洋, 陈宝玖. Er<sup>3+</sup>,Yb<sup>3+</sup>共掺Gd<sub>2</sub>WO<sub>6</sub>荧光粉的下转换温度效应[J]. 发光学报, 2013,34(4): 400-405
LI Jing-jing, SUN Jia-shi, ZHANG Jin-su, LI Xiang-ping, LI Lei, CHENG Li-hong, ZHONG Hai-yang, CHEN Bao-jiu. Temperature Effect of Downconversion Luminescence in Er<sup>3+</sup>,Yb<sup>3+</sup> Co-doped Gd<sub>2</sub>WO<sub>6</sub> Phosphors[J]. Chinese Journal of Luminescence, 2013,34(4): 400-405
李晶晶, 孙佳石, 张金苏, 李香萍, 李磊, 程丽红, 仲海洋, 陈宝玖. Er<sup>3+</sup>,Yb<sup>3+</sup>共掺Gd<sub>2</sub>WO<sub>6</sub>荧光粉的下转换温度效应[J]. 发光学报, 2013,34(4): 400-405 DOI: 10.3788/fgxb20133404.0400.
LI Jing-jing, SUN Jia-shi, ZHANG Jin-su, LI Xiang-ping, LI Lei, CHENG Li-hong, ZHONG Hai-yang, CHEN Bao-jiu. Temperature Effect of Downconversion Luminescence in Er<sup>3+</sup>,Yb<sup>3+</sup> Co-doped Gd<sub>2</sub>WO<sub>6</sub> Phosphors[J]. Chinese Journal of Luminescence, 2013,34(4): 400-405 DOI: 10.3788/fgxb20133404.0400.
采用共沉淀法制备了Er
3+
Yb
3+
共掺Gd
2
WO
6
荧光粉
通过对浓度猝灭曲线的分析表明Er
3+
间的相互作用类型为电偶极-电偶极相互作用。分析了样品荧光的温度效应并得到摩尔分数为5%和20%的Er
3+
掺杂样品的激活能
E
分别为0.27和0.29 eV。利用Er
3+
的
2
H
11/2
和
4
S
3/2
能级跃迁至基态的荧光强度比随温度变化这一特性研究了两个不同Er
3+
掺杂浓度样品的下转换温度效应
结果表明该材料体系具有良好的温度传感特性。
The Er
3+
Yb
3+
co-doped Gd
2
WO
6
phosphors were prepared with co-precipitation method. Electric dipole-dipole interaction between Er
3+
in Er
3+
Yb
3+
-doped Gd
2
WO
6
phosphor is demonstrated from the curve of concentration quenching. By analyzing the temperature character of the phosphors
the activation energy of samples with 5% and 20% doping mole fractions is obtained and the experimental values are 0.27 and 0.29 eV
respectively. The temperature characters of samples with two different doping concentrations are analyzed by means of fluorescence intensity ratio from
2
H
11/2
4
I
15/2
and
4
S
3/2
4
I
15/2
radiative transitions
indicating good temperature sensor for the present materials.
Li Y J, Liu M, Fu J. Temperature sensing technology and its application in power industry [J]. J. Shenyang Electric Power Institute Engineering (沈阳工程学院学报), 2011, 7(1):53-55 (in Chinese).[2] Jiang C H, Luan W Y. Temperature characteristics of Er3+-doped silicate glass for high temperature sensing material [J]. Instrument Technique and Sensor (仪表技术与传感器), 2009(1):4-8 (in Chinese).[3] Li F, Lai B Y, Wang J, et al. Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass [J]. J. Lumin., 2010, 130(12):2418-2423.[4] Seat H C, Sharp J H. Er3+/Yb3+-codoped Al2O3 crystal fibres for high-temperature sensing [J]. Meas. Sci. Technol., 2009, 14(3):279-285.[5] Marta Q, Eugenio C, Fernando C, et al. Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles [J]. Appl. Phys. Exp., 2011, 4(2):022601-1-3.[6] Wu Q, Yang L W, Liu Y X, et al. Frequency up-conversion properties of Er3+/Yb3+ co-doped zinc oxide powders [J]. Instrument Technique and Sensor (仪表技术与传感器), 2008, 28(7):1473-1478 (in Chinese).[7] Berthou H, Jorgensen C K. Optical fiber temperature sensor based on upconversion-excited fluorescence [J]. Opt. Lett., 1990, 15(19): 1100-1102.[8] Maciel G S, Menezes L S, Gomes A S L, et al. Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass [J]. IEEE Photon. Technol. Lett., 1995, 7(12):1474-1476.[9] Dos Santos P V, De Araujo M T, Gouveia-Neto A S, et al. Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass [J]. Appl. Phys. Lett., 1998, 73(5):578-580.[10] Li C R, Dong B, Ming C G, et al. Application to temperature sensor based on green up-conversion of Er3+ doped silicate glass [J]. Sensors, 2007, 7(11):2652-2659.[11] Yu T T. Luminescence Properties of Tungstate Phosphors Doped with Rare-earth Ion. Dalian: Dalian Maritime University, 2011.[12] De Vicente F S, De Castro A C, De Souza M F, et al. Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation [J]. Thin Solid Film, 2002, 418(2):222-227.[13] Tian Y, Chen B J, Hua R N, et al. Synthesis and characterization of novel red emitting nanocrystal Gd6WO12:Eu3+ phosphors [J]. Physica B, 2009, 404(20):3598-3601.[14] Tian Y, Qi X H, Wu X W, et al. Effect of Sm3+ doping on structural and luminescent properties of CaMoO4:Eu3+ red phosphors [J]. J. Phys. Chem. C, 2009, 32(5):10767-10772.[15] Meng Q Y, Chen B J, Xu W, et al. Study on concentration quenching and energy transfer in Ln3+(Ln=Tb, Tm, Eu) in Y2O3 nanocrystal powders [J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2009, 29(1):151-155 (in Chinese).[16] Ou Y F P, Tang B. Study on energy transfer of Y2O2S:Tb nanocrystals [J]. Rare Metal Mat. Eng.(稀有金属材料工程), 2003, 32(7):522-525 (in Chinese).[17] Li D, Lu S Z, Wang H Y, et al. Concentration quenching of TB3+ emissions in Y2O2S nanocrystals [J]. Chin. J. Lumin.(发光学报), 2012, 22(3):227-231 (in Chinese).[18] Wang M Y, Zhang X, Hao Z D, et al. Enhanced phosphorescence in N contained Ba2SiO4:Eu2+ for X-ray and cathode ray tubes [J]. Opt. Mater., 2010, 32(9):1042-1045.[19] Wang J, Zhang M, Zhang Q, et al. The photoluminescence and thermoluminescence properties of novel green long-lasting phosphorescence materials Ca8Mg(SiO4)4Cl2:Eu2+,Nd3+ [J]. Appl. Phys. B, 2007, 87(16):249-254.[20] Bo Y. L, Zhao Z, Bo Y J. Temperature sensing based on fluorescence intensity ratio of rare earth-doped fiber [J]. Optical Fiber and Electric Cable (光纤与电缆及其应用技术), 2010(5):4-6 (in Chinese).[21] León-luis S F, Rodríguez-Mendoza U R, Lalla E, et al. Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass [J]. Sens. Actuators B, 2011, 158(1):208-213.
0
浏览量
178
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构