浏览全部资源
扫码关注微信
1. 华南理工大学 高分子光电材料与器件研究所,广东 广州,510640
2. 华南理工大学 发光材料与器件国家重点实验室,广东 广州,510640
收稿日期:2011-12-05,
修回日期:2012-01-15,
网络出版日期:2012-03-10,
纸质出版日期:2012-03-10
移动端阅览
李祥, 文尚胜, 姚日晖. 硅基有机太阳能电池光学性能分析[J]. 发光学报, 2012,33(3): 286-293
LI Xiang, WEN Shang-sheng, YAO Ri-hui. Analysis of Optical Performance for Organic Solar Cell on Si Substrate[J]. Chinese Journal of Luminescence, 2012,33(3): 286-293
李祥, 文尚胜, 姚日晖. 硅基有机太阳能电池光学性能分析[J]. 发光学报, 2012,33(3): 286-293 DOI: 10.3788/fgxb20123303.0286.
LI Xiang, WEN Shang-sheng, YAO Ri-hui. Analysis of Optical Performance for Organic Solar Cell on Si Substrate[J]. Chinese Journal of Luminescence, 2012,33(3): 286-293 DOI: 10.3788/fgxb20123303.0286.
采用传输矩阵法的光学模型以及MATLAB软件模拟了硅基有机太阳能电池对入射光的吸收率和各层厚度的关系。模拟表明活性层对入射光的吸收率主要受其自身厚度影响
且由于微腔效应
这种结构的电池可以很大程度上优化活性层厚度;另外通过调节折射率匹配层厚度和传输层厚度也可以优化活性层对入射光的吸收率。在本文所讨论的厚度中
最佳传输层厚度为10 nm左右
最佳匹配层厚度为30 nm ZnS或者60 nm Alq
3
。
The effects of active layer thickness
capping layer thickness and transport layer thickness on the optical absorption of active layer have been investigated by employing MATLAB and an optical model based on the transfer matrix method. The results reveal that the absorption of active layer is mainly attributed to its thickness which could be optimized by the microcavity effect. Furthermore
it demonstrates that active layer optical absorption can be effectively improved by adjusting the thickness of capping layer and transport layer. At last
the results show that the solar cells with 10 nm thick transport layer have superior optical and electrical performance than those without transport layer; the optimized thickness of ZnS layer and the thickness of Alq
3
layer are 30 nm and 60 nm
respectively. The research of optical properties of organic solar cell on Si substrate provides a theoretical basis to its future structural design and application.
Li Weimin, Guo Jinchuan, Sun Xiuquan, et al. Effects of illumination intensity and temperature on double-layer heterojunction organic photovoltaic device performance [J]. Chin. J. Lumin. (发光学报), 2011, 32(7):724-728 (in Chinese).[2] Liu Yadong, Su Zisheng, Zhuang Taojun, et al. Significant enhanced performance of organic solar cells with F16CuPc as the anode buffer layer [J]. Chin. J. Lumin. (发光学报), 2011, 32(11):1176-1180 (in Chinese).[3] Wu Bing, Liu Pengyi, Li Yanwu, et al. Electron transport layers of inverted heterojunction organic solar cells [J]. Chin. J. Lumin. (发光学报), 2010, 31(5):753-756 (in Chinese).[4] Oyamada T, Sugawara Y, Terao Y, et al. Top light-harvesting organic solar cell using ultrathin Ag/MgAg layer as anode [J]. Jpn. J. Appl. Phys., 2007, 46(4A):1734-1735.[5] Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer: Fullerene bulk heterojunction solar cells [J]. Adv. Mater., 2007, 19(12):1551-1566.[6] Gilles D, Karen F, Tayebeh A, et al. Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence [J]. J. Appl. Phys., 2007, 102(12):123109-1-3.[7] Gilles D, Karen F, Markus C, et al. Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells [J]. J. Appl. Phys., 2007, 102(5):054516-1-3.[8] Gui Yuchang, Wen Shangsheng, Liu Yanmei, et al. Optical and thermal analysis for polymer light-emitting diode as a flat panel light source [J]. Chin. J. Lumin. (发光学报), 2011, 32(8):809-815 (in Chinese).[9] Gui Yuchang, Wen Shangsheng, Zhang Jianping, et al. Analysis of light out-coupling efficiency in top-emitting polymer light-emitting devices [J]. Acta Optica Sinica (光学学报), 2011, 31(6):063102-1-7 (in Chinese).[10] Long Yongbing. Improving optical performance of inverted organic solar cells by microcavity effect [J]. Appl. Phys. Lett., 2009, 95(19):193301-1-3.[11] Persson N M, Arwin H, Inganas O. Optical optimization of polyfluorene-fullerene blend photodiodes [J]. J. Appl. Phys., 2005, 97(3):034503-1-3.[12] Kumar S, Shukla V K, Tripathi A. Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3) [J]. Thin Solid Films, 2005, 477(1-2):240-243.[13] Lee Y J, Nichols W T, Kim D G, et al. Chemical vapour transport synthesis and optical characterization of MoO3 thin films [J]. J. Phys. D, 2009, 42(11):115419-1-5.[14] Kotlarski Jan D, Blom Paul W M, Koster Lambert J A, et al. Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells [J]. J. Appl. Phys., 2008, 103(8):084502-1-5.[15] Nam Young Min, Huh June, Jo Won Ho. Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells [J]. Sol. Eng. Mater. Sol. Cells, 2010, 94(6):1118-1124.[16] Tumbleston J R, Ko D H, Samulski E T, et al. Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer [J]. Appl. Phys. Lett., 2009, 94(4):043305-1-3.[17] Gilles D, Karen F, Markus C, et al. Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells [J]. J. Appl. Phys., 2007, 102(5):054516-1-7.[18] Huang Jinsong, Li Gang, Yang Yang. Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and -phenyl C61-butyric acid methyl ester blends [J]. Appl. Phys. Lett., 2005, 87(11):112105-1-3.[19] Meiss J, Riede M K, Leo K. Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes [J]. Appl. Phys. Lett., 2009, 94(1):013303-1-3.[20] Han Donggeon, Kim Hoyeon, Lee Soohyun, et al. Realization of efficient semitransparent organic photovoltaic cells with metallic top electrodes: Utilizing the tunable absorption asymmetry [J]. Opt. Exp., 2010, 18(23):A513-A521.[21] Cho Sanghwan, Song Youngwoo, Lee Joongu, et al. Weak-microcavity organic light-emitting diodes with improved light out-coupling [J]. Opt. Exp., 2008, 16(17):12632-12639.[22] Niggemann M, Glatthaar M, Lewer P, et al. Functional microprism substrate for organic solar cells: Symposium on thin film and nanostructured materials for photovoltaics held at the 2005 EMRS Meeting, Strasbourg . Lausanne: Elsevier SD, 2006.[23] Long Yongbing. Optimizing one-dimensional photonic-crystals based semitransparent organic solar cells by tailoring reflection phase shift within photonic bandgap [J]. Appl. Phys. Lett., 2011, 99(9):093310-1-3.
0
浏览量
349
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构