浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 长春理工大学 高功率半导体激光国家重点实验室,吉林 长春,130022
收稿日期:2011-12-19,
修回日期:2012-01-17,
网络出版日期:2012-03-10,
纸质出版日期:2012-03-10
移动端阅览
杨旭, 曲轶, 范翊, 刘星元. 阳极氧化法制备Y型TiO<sub>2</sub>纳米管[J]. 发光学报, 2012,33(3): 269-274
YANG Xu, QU Yi, FAN Yi, LIU Xing-yuan. Y-branched TiO<sub>2</sub> Nanotubes Prepared by Electrochemical Anodization[J]. Chinese Journal of Luminescence, 2012,33(3): 269-274
杨旭, 曲轶, 范翊, 刘星元. 阳极氧化法制备Y型TiO<sub>2</sub>纳米管[J]. 发光学报, 2012,33(3): 269-274 DOI: 10.3788/fgxb20123303.0269.
YANG Xu, QU Yi, FAN Yi, LIU Xing-yuan. Y-branched TiO<sub>2</sub> Nanotubes Prepared by Electrochemical Anodization[J]. Chinese Journal of Luminescence, 2012,33(3): 269-274 DOI: 10.3788/fgxb20123303.0269.
在含有质量分数为0.5%的NH
4
F和体积分数为5% 的H
2
O的乙二醇混合溶液中
采用三步阳极氧化法制备了表面形貌高度有序的Y型TiO
2
纳米管阵列。讨论了钛片预处理过程对优化TiO
2
纳米管阵列表面形貌的影响以及采用升温法制备Y型TiO
2
纳米管的内在机理
并在较宽的温度范围内(20~60 ℃)对钛片进行阳极氧化。实验结果表明当阳极氧化第三步的电解液温度设置在40 ℃以上时
Y型TiO
2
纳米管阵列的顶端将出现环状纳米线、管壁破裂以及管长减小等现象
不利于保证Y型TiO
2
纳米管阵列的整体质量。因此
30~40 ℃是选取阳极氧化第三步温度的理想范围。
Highly-ordered Y-branched TiO
2
nanotube arrays were fabricated on the Ti foils in ethylene glycol containing 0.5% NH
4
F(mass fraction)and 5% H
2
O(volume fraction) by a three-step electrochemical anodic oxidation via increasing the electrolyte temperature. The effect of pretreatment process on surface morphology and the growth mechanism of Y-branched TiO
2
nanotubes were discussed. Four samples were fabricated by anodic oxidation at different temperature ranges of 20~60 ℃. The results show that phenomena such as annular nanowires
nanotube breach or length reduction
etc.
will appear in the surface morphology of Y-branched TiO
2
nanotubes when electrolyte temperature is set at 40 ℃ or more in the third step of anodic oxidation
which is not conducive to ensuring the overall quality of Y-branched TiO
2
nanotube arrays. However
the ideal temperature range is 30~40 ℃ in the third step during the anodizing process.
Tan Bing, Wu Yiying. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites [J]. J. Phys. Chem. B, 2006, 110(32):15932-15938.[2] Wang Jun, Zhiqun Lin. Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering [J]. Chem. Mater., 2010, 22(2):579-584.[3] Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells [J]. Nano Lett., 2006, 6(2):215-218.[4] Peng T Y, Hasegawa A, Qiu J R, et al. Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method [J]. Chem. Mater., 2003, 15(10):2011-2016.[5] Zhang Anbang, Ma Xiangyang, Jin Lu, et al. Electroluminescence of heterostructures formed by p+-Si and TiO2 films derived from oxidation of sputtered Ti films [J]. Chin. J. Lumin. (发光学报), 2011, 32(5):471-475 (in Chinese).[6] Zeng Qingguang, Le Tian, Zou Huayong, et al. Temperature effect on the structure and optical properties of Eu/TiO2 nanomaterials [J]. Chin J. Lumin.(发光学报), 2011, 32(4):358-362 (in Chinese).[7] Yin H, Liu H, Shen W Z. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization [J]. Nanotechnology, 2010, 21(3):035601-1-7.[8] Wang Daoai, Liu Ying, Yu Bo, et al. TiO2 nanotubes with tunable morphology, diameter, and length: Synthesis and photo-electrical/catalytic performance [J]. Chem. Mater., 2009, 21(7):1198-1206.[9] Park J, Bauer S, Von der Mark K, et al. Nanosize and vitality: TiO2 nanotube diameter directs cell fate [J]. Nano Lett., 2007, 7(6):1686-1691.[10] Li Shiqi, Zhang Gengmin, Guo Dengzhu, et al. Anodization fabrication of highly ordered TiO2 nanotubes [J]. J. Phys. Chem. C, 2009, 113(29):12759-12765.[11] Mohapatra S K, Misra M, Mahajan V K, et al. Synthesis of Y-branched TiO2 nanotubes [J]. Materials Lett., 2008, 62(12-13):1772-1774.[12] Pang Xuelai, Shi Hong, Tang Xinde, et al. A coaxial heterogeneity of cerium dioxide nanotubes-titania nanotubes array films, China: CN 201110002998.5 . 2011-01-07.[13] Zhang Jingwen, Liu Zhenling, Hou Xun. Effect of Pretreatment Process on Fabrication of Anodic Nanoporous Alumina . Xi'an: Xi'an Jiaotong University, 2006.[14] Chen Bensong, Xu Qiaoling, Zhao Xianglong, et al. Branched silicon nanotubes and metal nanowires via AAO-template-assistant approach [J]. Adv. Funct. Mater., 2010, 20(21):3791-3796.[15] Meng Guowen, Han Fangming, Zhao Xianglong, et al. A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology [J]. Angew. Chem. Int. Ed., 2009, 48(39):7166-7170.[16] Chen Shuoshuo, Ling Zhiyuan, Hu Xing, et al. Controlled growth of branched channels by a factor of 1/ n anodizing voltage [J]. J. Mater. Chem., 2009, 19(32):5717-5719.[17] Chen Shuoshuo, Ling Zhiyuan, Hu Xing, et al. Competitive growth of branched channels inside AAO membranes [J]. J. Mater. Chem., 2010, 20(9):1794-1798.[18] Cai Fanggong, Yang Feng, Zhao Yong, et al. Preparation of TiO2 nanotube and nanotube/nanowire composite arrays by temperature control [J]. Chin. J. Inor. Chem.(无机化学学报), 2011, 27(3):504-508 (in Chinese).
0
浏览量
94
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构