浏览全部资源
扫码关注微信
1. 天津理工大学 显示材料与光电器件教育部重点实验室 天津,300384
2. 天津市光电显示材料与器件重点实验室 天津,300384
收稿日期:2011-12-20,
修回日期:2012-01-12,
网络出版日期:2012-03-10,
纸质出版日期:2012-03-10
移动端阅览
印寿根, 杨利营, 许新蕊, 秦文静. 利用阴极修饰层提高有机光伏电池的性能及稳定性[J]. 发光学报, 2012,33(3): 233-237
YIN Shou-gen, YANG Li-ying, XU Xin-rui, QIN Wen-jing. Enhancement of The Performance and Stability of Polymer Photovoltaic Cells by Cathode Buffer Layer[J]. Chinese Journal of Luminescence, 2012,33(3): 233-237
印寿根, 杨利营, 许新蕊, 秦文静. 利用阴极修饰层提高有机光伏电池的性能及稳定性[J]. 发光学报, 2012,33(3): 233-237 DOI: 10.3788/fgxb20123303.0233.
YIN Shou-gen, YANG Li-ying, XU Xin-rui, QIN Wen-jing. Enhancement of The Performance and Stability of Polymer Photovoltaic Cells by Cathode Buffer Layer[J]. Chinese Journal of Luminescence, 2012,33(3): 233-237 DOI: 10.3788/fgxb20123303.0233.
分别制备了以苯甲酸锂、碳酸铯和聚氧化乙烯为阴极修饰层的基于P3HT∶PCBM体系的本体异质结有机光伏电池。比较了3种阴极修饰层对器件性能及稳定性的影响。结果表明:选择合适的阴极修饰层材料是提高光电转换效率、延长电池使用寿命的可行性途径之一。纯无机阴极修饰层不能有效地阻挡氧气和水进入活性层
对于减缓器件的性能衰退效果不如有机阴极修饰层材料。有机聚合物材料可以减小漏电流的产生
开路电压和填充因子都得到很大提高
有利于提高器件的性能及稳定性。合成可溶液加工的具有极性基团的共轭聚合物材料是未来阴极修饰层的发展方向。
Enhanced performance and stability of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6
6]-phenyl-C
61
butyric acid methyl ester (PCBM) blend were obtained by using cesium carbonate (Cs
2
CO
3
)
lithium benzoate (C
6
H
5
COOLi)
poly(ethylene-oxide) (PEO) as cathode buffer layer. The improved performance may attribute to the cathode buffer layer which reduces the interface resistance between the active layer and the cathode and enhances the interior electric field that may result in efficient charge transportation. In addition
the cathode buffer layer may serve as an effective oxygen and moisture diffusion barrier for the organic solar cells. The organic cathode buffer layer is superior to the inorganic materials. Solution processed conjugated polymer bearing strong polar groups in the side chains is a promising candidate as an interlayer to improve the efficiency of electron collection and to reduce the ambience influence on the stability of polymer solar cells.
Liu Q, Liu Z F, Zhang X Y, et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT [J]. Adv. Funct. Mater., 2009, 19(6):894-904.[2] Liu Q, Liu Z F, Zhang X Y, et al. Organic photovoltaic cells based on an acceptor of soluble graphene [J]. Appl. Phys. Lett., 2008, 92(22):223303-1-3.[3] Liu Q, Mao J, Liu Z F, et al. Photovoltaic device based on poly(phenyleneethynylene)/SWNTs composite active layer [J]. Nanotechnology, 2008, 19(11):115601-1-5.[4] Yin B, Yang L Y , Liu Y S, et al. Solution-processed bulk heterojunction solar cells based on an oligothiophene derivative[J]. Appl. Phys. Lett., 2010, 97(2):023303-1-3.[5] Wu B, Liu B Y, Li Y W, et al. Electron transport layers of inverted heterojunction organic solar cells [J]. Chin. J. Lumin. (发光学报), 2010, 31(5):753-756 (in Chinese).[6] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene [J]. Science, 1992, 258(5087):1474-1476.[7] Hiorns R C, de Bettignies R, Leroy J, et al. High molecular weights, polydispersities, and annealing temperatures in the optimization of bulk-heterojunction photovoltaic cells based on poly(3-hexylthiophene) or poly(3-butylthiophene) [J]. Adv. Funct. Mater., 2006, 16(17):2263-2273.[8] Hoppe H, Niggenmann M, Winder C, et al. Nanoscale morphology of conjugated polymer/ fullerene-based bulk-heterojunction solar cells [J]. Adv. Funct. Mater., 2004, 14(10):1005-1011.[9] Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Adv. Funct. Mater., 2005, 15(10):1617-1622.[10] Yang Chunyun, Xu Xuming. A new multi-channels WDM based on photonic crystal heterostructures [J]. Chin. J. Lumin.(发光学报), 2010, 31(5):757-761 (in Chinese).[11] Robert F S. Outlook brightens for plastic solar cells [J]. Science, 2011, 332(6027):293-1-1.[12] Heliatedk. Heliatek achieves new world record for organic solar cells with certified 9.8% cell efficiency . (2011-12-5).http://www.konarka.com/index.php/site/pressreleasedetail/konarkas_power_plastic_achieves_world_record_83_efficiency_certification_fr.[13] Jiang X X, Xu H, Yang L G, et al. Effect of CsF interlayer on the performance of polymer bulk heterojunction solar cells [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(5):650-653.[14] Zhao Y, Xie Z Y, Qu Y, et al. Effects of thermal annealing on polymer photovoltaic cells with buffer layers and in situ formation of interfacial layer for enhancing power conversion efficiency [J]. Synth. Met., 2008, 158(21-24):908-911.[15] Park S, Tark S J, Lee J S, et al. Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(6-7):1020-1023.[16] Tan Z, Yang C, Zhou E, et al. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer [J]. Appl. Phys. Lett., 2007, 91(2):0235091-1-3.[17] Lee K, Kim J Y, Park H, et al. Air-stable polymer electronic devices [J]. Adv. Mater., 2007, 19(18):2445-2449.[18] Zhao Y, Xie Z Y, Qin C J, et al. Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(5):604-608.[19] Yang L Y, Xu H, Tian H, et al. Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells [J]. Sol. Energy Mater. Sol. Cells, 2010, 94(10):1831-1834.[20] Wang Y L, Yang L Y, Yao C, et al. Enhanced performance and stability in polymer photovoltaic cells by using lithium benzoate as cathode interfacial layer [J]. Sol. Energy Mater. Sol. Cells, 2011, 95(4):1243-1247.[21] He Z C, Zhong C M, Huang X, et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells [J]. Adv. Mater., 2011, 23(40):4636-4643.[22] Nam C Y, Su D, Black C T. High-performance air-processed polymer fullerene bulk heterojunction solar cells [J]. Adv. Funct. Mater., 2009, 19(22):3552-3559.[23] Jrgensen M, Norrman K, Krebs F C. Stability/degradation of polymer solar cells [J]. Sol. Energy Mater. Sol. Cells, 2008, 92(7):686-714.
0
浏览量
198
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构