浏览全部资源
扫码关注微信
1. 北京理工大学 光电学院 北京,100081
2. 北京理工大学 基础教育学院 北京,102488
收稿日期:2011-10-28,
修回日期:2011-11-27,
网络出版日期:2012-02-10,
纸质出版日期:2012-02-10
移动端阅览
李畅, 章婷, 薛唯, 孙硕. 阴极缓冲层对于不同惰性气氛气压退火处理的 P3HT∶PCBM光伏性能的影响[J]. 发光学报, 2012,33(2): 221-226
LI Chang, ZHANG Ting, XUE Wei, SUN Shuo. Effects of Cathode Buffer Layer on The Performance of P3HT∶PCBM-based Photovoltaic Devices Annealed under Various Ambient Pressures[J]. Chinese Journal of Luminescence, 2012,33(2): 221-226
李畅, 章婷, 薛唯, 孙硕. 阴极缓冲层对于不同惰性气氛气压退火处理的 P3HT∶PCBM光伏性能的影响[J]. 发光学报, 2012,33(2): 221-226 DOI: 10.3788/fgxb20123302.0221.
LI Chang, ZHANG Ting, XUE Wei, SUN Shuo. Effects of Cathode Buffer Layer on The Performance of P3HT∶PCBM-based Photovoltaic Devices Annealed under Various Ambient Pressures[J]. Chinese Journal of Luminescence, 2012,33(2): 221-226 DOI: 10.3788/fgxb20123302.0221.
制备了基于聚(3-己基噻吩)(P3HT)与可溶性富勒烯衍生物(PCBM)共混体系的太阳能电池。通过改变活性层退火处理时惰性气氛环境的压强
在一定程度上实现对共混物相分离以及聚合物结晶度的控制
研究了LiF作为阴极缓冲层对不同压强下退火处理的器件性能的影响。实验发现
LiF层的关键作用在于稳定开路电压以及提升短路电流
从而带动转化效率整体提升。结果表明
LiF层可以改善器件活性层与金属电极接触的界面形态
而器件的最终性能则由活性层的微观形貌与电极界面形态共同决定。
Organic photovoltaic devices based on the bulk heterojunction of poly(3-hexylthiophene) and [6
6]-phenyl-C
61
butyric acid methyl ester(P3HT∶PCBM) have been fabricated in this work. We have studied that the effects of LiF
as cathode buffer layer
on the performance of pre-annealed devices under various ambient pressure. The results indicate that the key role of ultrathin LiF layer is to increase the short circuit current and maintain the open circuit voltage
which can improve the power conversion efficiencies. Nevertheless
the performance of polymer solar cells are mainly determined by the morphology of active layer and the configuration of interface between electrode and blend layer
while the latter could be improved by cathode buffer layer.
Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science, 1995, 270(5243):1789-1791.[2] Schn J H, Kloc Ch, Haddon R C, et al. A superconducting field-effect switch [J]. Science, 2000, 288(5466):656-658.[3] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317(5835): 222-225.[4] Brabec C J. Organic photovoltaics: Technology and market [J]. Sol. Energy Mater. Sol. Cells, 2004, 83(2):273-292.[5] Ma W, Yang C Y, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Adv. Funct. Mater., 2005, 15(10):1617-1622.[6] Konarka Technologies Inc. Konarka's power plastic achieves world record 8.3% efficiency certification from national energy renewable laboratory(NREL) . . http://www.konarka.com/index.php/site/pressreleasedetail/konarkas_power_plastic_achieves_world_record_83_efficiency_certification_fr.[7] Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nat. Mater., 2005, 4(11):864-868.[8] Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: Fullerene solar cell blends [J]. Nat. Mater., 2008, 7(2):158-164.[9] Ahlswede E, Hanisch J, Powalla M. Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells [J]. Appl. Phys. Lett., 2007, 90(16):163504-1-3.[10] Li Shuang, Zhou Xiang. Effects of molybdenum oxide anode buffer layer on performance of organic solar cells [J]. Chin.J. Lumin. (发光学报), 2010, 31(2):291-295 (in Chinese).[11] Liu Yadong, Su Zisheng, Zhuang Taojun, et al. Significant enhanced performance of organic solar cells with F16CuPc as the anode buffer layer [J]. Chin. J. Lumin. (发光学报), 2011, 32(11):1176-1184 (in Chinese).[12] Huang Y C, Liao Y C, Li S S, et al. Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(6):888-892.[13] Zhokhavets U, Erb T, Gobsch G, et al. Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells [J]. Chem. Phys. Lett., 2006, 418(4):324-350.[14] Li G, Shrotriya V, Yao Y, et al. Manipulating regioregular poly(3-hexylthiophene)∶ -phenyl-C61-butyric acid methyl ester blendsroute towards high efficiency polymer solar cells [J]. J. Mater. Chem., 2007, 17(30):3126-3140.[15] Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells [J]. Appl. Phys. Lett., 2002, 80(7):1288-1290.[16] Brabec C J, Cravino A, Meissner D, et al. Origin of the open circuit voltage of plastic solar cells [J]. Adv. Funct. Mater., 2001, 11(5):374-380.[17] Schilinsky P, Waldauf C, Hauch J, et al. Simulation of light intensity dependent current characteristics of polymer solar cells [J]. J. Appl. Phys., 2004, 95(5):2816-2819.
0
浏览量
216
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构