浏览全部资源
扫码关注微信
1. 中国科学院长春应用化学研究所高分子物理与化学国家重点实验室,吉林 长春,130022
2. 长春师范学院 物理学院,吉林 长春,130032
3. 空军航空大学,吉林 长春,130022
收稿日期:2011-11-15,
修回日期:2011-12-19,
网络出版日期:2012-02-10,
纸质出版日期:2012-02-10
移动端阅览
贺小光, 田苗苗, 荀显超, 李春杰. 发光区插入超薄LiF层对有机电致发光器件性能的影响[J]. 发光学报, 2012,33(2): 192-196
HE Xiao-guang, TIAN Miao-miao, XUN Xian-chao, LI Chun-jie. Effects of Inserted LiF Thin Film Between EML and ETL on OLEDs Performance[J]. Chinese Journal of Luminescence, 2012,33(2): 192-196
贺小光, 田苗苗, 荀显超, 李春杰. 发光区插入超薄LiF层对有机电致发光器件性能的影响[J]. 发光学报, 2012,33(2): 192-196 DOI: 10.3788/fgxb20123302.0192.
HE Xiao-guang, TIAN Miao-miao, XUN Xian-chao, LI Chun-jie. Effects of Inserted LiF Thin Film Between EML and ETL on OLEDs Performance[J]. Chinese Journal of Luminescence, 2012,33(2): 192-196 DOI: 10.3788/fgxb20123302.0192.
着重对比了在以DCM掺杂Alq
3
为发光层的红光器件的发光区插入超薄LiF层后器件性能的改善。插入超薄LiF层后
器件的最大工作电流密度为487 mA/cm
2
相应的最大电致发光亮度为76 740 cd/m
2
最大外量子效率为5.9%。器件内量子效率为40%
超过了基于有机荧光小分子发光材料的有机电致发光器件的内量子效率的理论极限值25%。对器件内单线态及三线态激子的形成过程进行了分析
并推测:超薄LiF层的插入提高了器件内单线态电荷转移态/三线态电荷转移态的形成比例
进而提高了器件内单线态激子在激子总数中的比例
最终提高了器件的内量子效率。同时
超薄LiF层的插入改变了发光层内局域的内部电场
使器件的外量子效率不仅没有随电流密度的增加而降低
反而非线性增加。
The performance of two DCM∶Alq
3
based on red organic light-emitting diodes(OLEDs) were compared. In device A
ultrathin LiF was inserted between emitting layer and electron transporting layer
the other without inserting layer was named device B. As a result
device A showed a maximum EQE(external quantum efficiency) of 5.9%
which was obtained under the highest brightness 76 740 cd/m
2
with current density of 487 mA/cm
2
. Correspondingly
the internal quantum efficiency of 40% was far exceeded the theoretical upper limit of 25% for fluorescent OLEDs. We attributed the unusual phenomenon to the manipulation of the charge transfer state mixing and the electrical field effect on the excitons.
Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12):913-915.[2] Burroughes J H, Bradley D C C, Brown A R, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347:(6293):539-541.[3] Friend R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugated polymers [J]. Nature, 1999, 397(6715):121-128.[4] Tessler N. Lasers based on semiconducting organic materials [J]. Adv. Mater, 1999,11(5):363-370[5] Koschorreck M, Gehlhaar R, Lyssenko V G, et al. Dynamics of a high-Q vertical-cavity organic laser [J]. Appl. Phys. Lett., 2005, 87(18):181108-1-3.[6] Samuel I D W, Turnbull G A. Organic semiconductor lasers [J]. Chem. Rev., 2007, 107(4):1272-1295.[7] Baldo M A, Holmes R J, Forrest S R. Prospects for electrically pumped organic lasers [J]. Phys. Rev. B, 2002, 66(3):035321-1-16.[8] Tian M, Luo J, Liu X. Highly efficient organic light-emitting devices beyond theoretical prediction under high current density [J]. Opt. Express, 2009, 17(24):21370-21375.[9] Hou Lintao, Liu Pengyi, Zhang Jinglei, et al. Improved hole-injection contact by employing an ultra-thin MoO3 carrier injection layer [J]. Chin. J. Lumin.(发光学报), 2010, 31(3):326-330 (in English).[10] Tian Miaomiao, Fan Yi, Gao Jie, et al. Electroplex in organic light-emitting diodes [J]. Chin. J. Lumin.(发光学报), 2010, 31(6):779-783 (in Chinese).[11] Tian Miaomiao, Fan Yi, Liu Xingyuan. Fabrication and characteristics of transparent conducting bismuth-doped thin indium oxide Film [J]. Chin. J. Lumin.(发光学报), 2010, 31(4):605-608 (in Chinese).[12] Tu Aiguo, Zhou Xiang. OLEDs with Au/MoO3 hole injection layer [J]. Chin.J. Lumin.(发光学报), 2010, 31(2):157-161 (in Chinese).[13] Tian Miaomiao, Liu Xingyuan. High efficiency tandem organic light-emitting diode based on a new charge connecting layer [J]. Chin. J. Lumin.(发光学报), 2010, 31(5):651-655 (in Chinese).[14] Forrest S R, Bradley D D C, Thompson M E. Measuring the efficiency of organic light-emitting devices [J]. Adv. Mater., 2003, 15(13):1043-1048.[15] Segal M, Singh M, Rivoire K, et al. Extrafluorescent electro-luminescence in organic light-emitting devices [J]. Nature. Mater., 2007, 6(5):374-378.
0
浏览量
137
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构