浏览全部资源
扫码关注微信
1. 长春理工大学 理学院,吉林 长春,130021
2. 东北师范大学 物理学院,吉林 长春,130024
收稿日期:2011-11-23,
修回日期:2011-12-28,
网络出版日期:2012-02-10,
纸质出版日期:2012-02-10
移动端阅览
梁士利, 韩冬, 徐美玲, 崔霜, 张玲. 超声药物释放空化动力学行为研究[J]. 发光学报, 2012,33(2): 182-186
LIANG Shi-li, HAN Dong, XU Mei-ling, CUI Shuang, ZHANG Ling. Investigation of Microbubble Dynamics in Drug Release by Ultrasound Cavitation[J]. Chinese Journal of Luminescence, 2012,33(2): 182-186
梁士利, 韩冬, 徐美玲, 崔霜, 张玲. 超声药物释放空化动力学行为研究[J]. 发光学报, 2012,33(2): 182-186 DOI: 10.3788/fgxb20123302.0182.
LIANG Shi-li, HAN Dong, XU Mei-ling, CUI Shuang, ZHANG Ling. Investigation of Microbubble Dynamics in Drug Release by Ultrasound Cavitation[J]. Chinese Journal of Luminescence, 2012,33(2): 182-186 DOI: 10.3788/fgxb20123302.0182.
以直径1 m的脂质体为空化研究对象
从修正的Rayleigh空化方程入手
研究机械系数(
MI
)对300 kHz和1 MHz超声作用时空化效应的影响。脂质体的药物释放以超声作用前后脂质体中钙黄绿素的荧光强度为量度。模拟结果表明:在微泡振荡过程中
由超声波驱动产生的负向最大泡壁运动速度促使微泡半径从最大快速减小接近于零
微泡积聚到最大能量。对于300 kHz和1 MHz的激励超声
存在一个拐点(
MI
)值
当
MI
小于接近0.4时
1 MHz微泡半径变化幅度强于300 kHz;当
MI
>
0.4时
300 kHz微泡半径变化幅度强于1 MHz。这一结果预示在此范围内
300 kHz的药物释放效果好于1 MHz。本研究为超声空化效应研究及超声药物释放应用提供了理论依据。
The cavitation of a liposome microbubble dynamics in drug release was studied. The main objective of this work was to investigate the role by the mechanical index (
MI
) in the 300 kHz and 1MHz ultrasound. Several simulations indicated that bubble radius changes quickly from maximal value to zero by the driving frequency. Drug release was more efficient at 300 kHz compared to 1 MHz when
MI
was greater than 0.4. When the
MI
was less than 0.4
drug release was more efficient at 1 MHz compared to 300 kHz. The results demonstrate that ultrasound has a potential in enhancing drug release from liposome.
Lanza G M, Wickline S A. Targeted ultrasonic contrast agents for molecular imaging and therapy [J]. Progress in Cardiovascular Diseases, 2001, 44(1):13-31.[2] Treat L H, McDannold N, Vykhodtseva N, et al. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound [J]. Int. J. Cancer, 2007, 21(4):901-907.[3] Choi J J, Pernot M, Brown T R, et al. Spatio-temporal analysis of molecular delivery through the blood-brain barrier using focused ultrasound [J]. Phys. Med. Bio., 2007, 52(18):5509-5530.[4] Barenholz Y. Liposome application: Problems and prospects [J]. Curr. Opin. Colloid Interface Sci., 2001, 6(1):66-77.[5] Gudra T, Opielinski K J. Applying spectrum analysis and cepstrum analysis to examine the cavitation threshold in water and in salt solution [J]. Ultrasonics, 2004, 42(1-9):621-627.[6] Doinikov A A, Dayton P A. Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field [J]. J. Acoustical Society of America, 2006, 120(12):661-669.[7] Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery [J]. Annual Review of Biomedical Engineering, 2007, 9:415-447.[8] Lofstedt R, Weninger K, Putterman S, et al. Sonoluminescing bubbles and mass diffusion [J]. Physical Review E, 1995,51(5):4400-4410.[9] Afadzi M, de L Davies C, Hansen T F, et al. Ultrasound stimulated release of liposomal calcein //Ultrasonics Symposium (IUS), 2010, San Diego, USA: IEEE, 2010:2107-2110.[10] Prosperetti A. A generalization of the Rayleigh-Plesset equation of bubble dynamics [J]. Physics of Fluids, 1982, 25(3):409-410.
0
浏览量
159
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构