浏览全部资源
扫码关注微信
1. 西北大学 化工学院,陕西 西安,710069
2. 西北大学 物理学系,陕西 西安,710069
收稿日期:2011-11-28,
修回日期:2011-12-09,
网络出版日期:2012-02-10,
纸质出版日期:2012-02-10
移动端阅览
何奇, 樊君, 胡晓云, 叶岩溪, 孙涛. NaYF<sub>4</sub>∶Er<sup>3+</sup>的水热合成及其紫外上转换发光性能[J]. 发光学报, 2012,33(2): 122-127
HE Qi, FAN Jun, HU Xiao-yun, YE Yan-xi, SUN Tao. Hydrothermal Synthesis of NaYF<sub>4</sub>∶Er<sup>3+</sup> and Its Ultraviolet Up-conversion Light Emitting Property[J]. Chinese Journal of Luminescence, 2012,33(2): 122-127
何奇, 樊君, 胡晓云, 叶岩溪, 孙涛. NaYF<sub>4</sub>∶Er<sup>3+</sup>的水热合成及其紫外上转换发光性能[J]. 发光学报, 2012,33(2): 122-127 DOI: 10.3788/fgxb20123302.0122.
HE Qi, FAN Jun, HU Xiao-yun, YE Yan-xi, SUN Tao. Hydrothermal Synthesis of NaYF<sub>4</sub>∶Er<sup>3+</sup> and Its Ultraviolet Up-conversion Light Emitting Property[J]. Chinese Journal of Luminescence, 2012,33(2): 122-127 DOI: 10.3788/fgxb20123302.0122.
采用水热法制备了Er
3+
掺杂的NaYF
4
上转换发光材料
X射线衍射结果表明
当反应温度为180 ℃和200 ℃时
晶体属于六方晶型和四角晶型混合相态;当反应温度为220 ℃时
该晶体属于纯六方晶型结构。SEM和TEM观察发现
晶粒为六角形
样品颗粒分散性好
平均粒径约为100 nm。荧光光谱测试结果表明
当激发波长为500 nm时
样品发射出紫外光。从Er
3+
能级图谱可以得出
Er
3+
基态电子
4
I
15/2
首先跃迁到
2
H
11/2
与
4
S
3/2
能级上
随即经过能量转移上转换过程(ETU)分别发射出310 nm和340 nm的紫外光。结合Er
3+
发光机理可以推出上转换峰310 nm和340 nm均属于双光子过程。 研究结果表明
以NaYF
4
为基质掺杂Er
3+
产生的紫外上转换光在生物成像、光催化发应及生物标记等方面有着广阔的应用前景。
Er
3+
doped NaYF
4
up-conversion luminescence material was successfully prepared by hydrothermal method. The X-ray diffraction (XRD) indicates that when the reaction temperature is 180 ℃ or 200 ℃
the crystal structure is a mixture of hexagon and quadrangle
when the reaction temperature is 220 ℃
the crystal shows a hexagon phase structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results indicate that the crystal grain has a hexagon structure
and possesses an average size of about 100 nm with a uniform distribution. The fluorescence spectra show that under the exciting wavelength of 500 nm
the sample emits ultraviolet light. It can be concluded from the energy level diagram that the ground state
4
I
15/2
electrons of Er
3+
will first transmit to
2
H
11/2
and
4
S
3/2
levels
and then give out the 310 nm and 340 nm ultraviolet light through the energy transmit up-conversion (ETU) process
respectively. Considering the up-conversion emission mechanism
both the 310 nm and 340 nm up-conversion peaks can be characterized as biphotonic processes. The research results demonstrate that the Er
3+
doped NaYF
4
exhibites an ultraviolet up-conversion light emitting property;and it has a promising way in biomedical imaging
photocatalytic reaction and biomark process
etc.
Langhans K, Oltmann K, Reil S, et al. FELIX 3D display: Human-machine interface for interactive real three-dimensional imaging [J]. Lecture Notes in Computer Science, 2005, 3805:22-31.[2] Chen Min, Xiong Liqin, Li Fuyou. Upconversion luminescence imaging techniques and their application in targeted bioimaging [J]. Acta Biophysica Sinaica (生物物理学报), 2010, 26(8):702-710 (in Chinese).[3] Li Shuquan, Lin Jianming, Wu Jihuai, et al. Applications of up-conversion luminescence in dye sensitized solar cell [J].Chin. J. Inorganic Chem. (无机化学学报), 2009, 25(1):60-64 (in Chinese).[4] Chen Xiaobo, Yang Guojian, Zhang Chunlin, et al. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application [J]. Acta Physica Sinica (物理学报), 2010, 59(11):8191-8199 (in Chinese).[5] Song Kai, Ran Yingying, Kong Xianggui. Homogeneous immunoassay technology based on near infrared upconversion fluorescence resonance energy transfer [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2011, 31(1):86-90 (in Chinese).[6] Zhang Xinlu, Wang Yuezhu, Li Li, et al. Fractional thermal loading and thermal lensing in end-pumped Tm, Ho∶YLF lasers [J]. Acta Phys. Sinica (物理学报), 2009, 58(2):964-969 (in Chinese).[7] Zhao Junwei, Kong Xianggui. AEP-assisted hydrothermal synthesis and upconversion luminescence of NaYF4∶Yb3+,Er3+ nanocrystals [J]. Chin. J. Lumin. (发光学报), 2011, 32(7):675-679 (in Chinese).[8] Chen Zhe, Liu Zhenyu, Zhao Dan, et al. Effect of reactants concentration on NaYF4∶Yb3+, Tm3+ crystalline phase [J]. Chin. J. Lumin. (发光学报), 2011, 32(9):853-857 (in Chinese).[9] Wang Yu, Tu Langping, Zhao Junwei, et al.Upconversion luminescence of -NaYF4∶Yb3+,Er3+@-NaYF4 core/shell nanoparticles: Excitation power density and surface depence [J]. J. Phys. Chem. C, 2009, 113(17):7164-7169.[10] Cao Chunyan, Zhang Xianmin, Chen Minglun, et al. Ultraviolet and blue up-conversion fluorescence of NaY0.793-xTm0.007Yb0.2GdxF4 phosphprs [J]. J. Alloys and Compounds, 2010, 505(1):6-10.[11] Yang L W, Han H L, Zhang Y Y, et al. White emission by frequency up-conversion in Yb3+-Ho3+-Tm3+ triplydoped hexagonal nanorods [J].J. Phys. Chem. C, 2009, 113(44):18995-18999.[12] Feng Zhiqiang, Ge Ru, Chen Qijing, et al. Preparation and characterization of NaYF4∶Er3+ and NaYF4∶Yb3+/Er3+ upconversion fluorescence nanocrystalline [J]. Materizals Review, 2010, 24(15):23-24,37.[13] Ye Yanxi, Liu Enzhou, Hu Xiaoyun, et al. Preparation and luminescence properties of Y2O3∶Er3+/TiO2 with high specific surface area [J]. Chin. Science Bulletin (科学通报), 2001, 56(22):1797-1803 (in Chinese).[14] Wang Nengli, Wang Kun, Yang Liu, et al. Synthesis of Y2O3∶Er3+, Yb nanocrystalline up-conversion luminescent materials by low temperature gel-combustion method [J]. Chin. J. Inorganic Chem. (无机化学学报), 2011, 27(4):619-624 (in Chinese).[15] Wang Xin, Shan Guiye, Chao Kefu, et al. Effects of Er3+ concentration on UV/blue upconverted luminescence and a three-photon process in the cubic nanocry stalline Y2O3∶Er3+ [J].Materials Chem. and Phys., 2006, 99(2-3):370-374.[16] Zhao Suling, Hou Yanbing, Pei Xiaojiang, et al.Upconversiong luminescence of YLiF4∶Er3+ synthesized by hydrothermal method [J]. J. Rare Eraths, 2006, 24(2):154-157.[17] Sun jiayue, Zhang Weihang, Du Haiyan, et al. Hydrothermal synthesis and the enhanced blue upconversion luminescence of NaYF4∶Nd3+,Tm3+, Yb3+ [J]. Infrared Physics & Technology, 2010, 53(5):388-391.[18] An Ying, Yao Cheng, Qiao Xiaofen, et al. Influence of Yb3+ concentration on the fluorescence emission of Tm3+ in Tm3+/Yb3+∶LaF3 nanoparticals [J]. Acta Photonica Sinica (光子学报), 2010, 39(3):508-512 (in Chinese).[19] Wang Xin, Shan Guiye, An Limin, et al. The study of anti-Stokes photoluminescence propertise in the Y2O3∶Er3+ nanocrystals [J]. Acta Physica Sinica (物理学报), 2004, 53(6):1972-1976 (in Chinese).[20] Xu Fengxiu, Feng Guangjian, Liu Suwen, et al. A study on visible light photocatalytic activity of nano TiO2 doped with upconversion luminescence agent [J]. Bulletin of The Chinese Ceramic Society (硅酸盐通报), 2008, 27(6):1140-1145 (in Chinese).[21] Wang Jun, Xie Yingpeng, Zhang Zhaohong, et al.Photocatalytic degradation of organic dyes with Er3+∶YAlO3/ZnO composite under solar light [J]. Solar Energy Materals & Solar Cells, 2009, 93(3):355-361.[22] Cullity B D. Elements of X-Ray Diffraction [M]. Boston: Addison-Wesley, 1956.[23] Wang F, Han Y, Lim C S, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature, 2010, 463(7284):1061-1065.[24] Tan M C, Al-Baroudi L, Riman R E. Surfactant effects on efficiency enhancement of infrared-to-visible upconversion emissions of NaYF4∶Yb-Er [J]. ACS Appl. Mater. Interfaces, 2011, 3(10):3910-3915.[25] Francois Auzel. Upconversion and anti-stokes processes with f and d Ions in solids [J]. Chem. Rev., 2004, 104(1):138-174.[26] Pope C L, Reddy B R, Nash-Stevenson S K. Efficient violet upconversion signal from a fluoride fiber doped with erbium [J]. Opt. Lett., 1997, 22(5):295-297.
0
浏览量
136
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构