浏览全部资源
扫码关注微信
1. 北京理工大学 化学学院, 北京 100081
2. 北京理工大学 材料学院, 北京 100081
收稿日期:2011-09-14,
修回日期:2011-10-17,
网络出版日期:2012-01-10,
纸质出版日期:2012-01-10
移动端阅览
刘暘, 支俊格, 石建兵, 佟斌, 董宇平. 聚对苯撑乙炔咔唑薄膜对TNT挥发物的检测[J]. 发光学报, 2012,33(1): 102-108
LIU Yang, ZHI Jun-ge, SHI Jian-bing, TONG Bin, DONG Yu-ping. Fluorescence Detecting of Carbazole-containing Poly(phenyleneethynylene)'s Thin Film to TNT Volatile[J]. 发光学报, 2012,33(1): 102-108
刘暘, 支俊格, 石建兵, 佟斌, 董宇平. 聚对苯撑乙炔咔唑薄膜对TNT挥发物的检测[J]. 发光学报, 2012,33(1): 102-108 DOI: 10.3788/fgxb20123301.0102.
LIU Yang, ZHI Jun-ge, SHI Jian-bing, TONG Bin, DONG Yu-ping. Fluorescence Detecting of Carbazole-containing Poly(phenyleneethynylene)'s Thin Film to TNT Volatile[J]. 发光学报, 2012,33(1): 102-108 DOI: 10.3788/fgxb20123301.0102.
以3
6-二溴-9-辛基咔唑和2
5-二戊烷氧基-1
4-二乙炔基苯为单体
通过Pd催化的Sonogashira偶联反应合成了聚对苯撑乙炔咔唑衍生物PPECz。PPECz的溶液和固体薄膜都具有较好的发光性能
并且均对2
4
6-三硝基甲苯(TNT)有明显的响应。在常温常压条件下
微量(40 g)的TNT挥发物在60 s内就能使聚合物PPECz薄膜的荧光强度被猝灭56%
可作为一种潜在的硝基苯类爆炸物的荧光检测材料。
Poly(phenylene ethynylene) containing carbazole unit in the main-chain (PPECz) was synthesized by Pd-catalyzed Sonogashira coupling reaction between 3
6-dibromo-9-octylcarbazole and 2
5-dimethoxy-1
4-diethynylbenzene. PPECz in the solution and thin film exhibits obvious luminescence properties
which can be used to detect TNT sensitively. The fluorescence intensity of PPECz thin-film can be quenched 56% by the volatile of 40 g TNT solid at 60 s at normal atmospheric temperature and pressure. This strategy can provide a platform for developing highly sensitive and efficient chemo sensors for warfare explosives.
Moore D S. Instrumentation for trace detection of high explosives [J]. Review of Scientific Instruments, 2004, 75(8):2499-2512.[2] McLuckey S A, Goeringer D E, Stephenson J L, et al. High explosives vapor detection by glow discharge ion trap mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 1996, 10(3):287-298.[3] Ghosh S, Mukherjee P S. Self-assembly of a nanoscopic prism via a new organometallic Pt-3 acceptor and its fluorescent detection of nitroaromatics [J]. Organometallics, 2008, 27(3):316-319.[4] Bar A K, Shanmugaraju S, Mukherjee P S, et al. Self-assembly of neutral and cationic Pd(Ⅱ) organometallic molecular rectangles: synthesis, characterization and nitroaromatic sensing [J]. Dalton Transactions, 2011, 40(10):2257-2267.[5] Shanmugaraju S, Bar A K, Mukherjee P S, et al. Coordination-driven self-assembly of metallamacrocycles via a new Pt(2)(Ⅱ) organometallic building block with 90 degrees geometry and optical sensing of anions [J]. Organometallics, 2010, 29(13):2971-2980.[6] Zyryanov G V, Palacios M A, Anzenbacher P. Simple molecule-based fluorescent sensors for vapor detection of TNT [J]. Org. Lett., 2008, 10(17):3681-3684.[7] Muthu S, Ni Z, Vittal J J. Photoluminescent coordination polymers of d(10) metals with 4,4'-dipyridylsulfide (dps) [J]. Inorganica Chimica Acta, 2005, 358(3):595-605.[8] Collinson S R, Gelbrich T, Tucker J H R, et al. Novel ferrocene receptors for barbiturates and ureas [J]. Chem. Comm., 2001(6):555-556.[9] Zhou Q, Swager T M. Methodology for enhancing the sensitivity of fluorescent chemosensors - energy migration in conjugated polymers [J]. J. Am. Chem. Soc., 1995, 117(26):7017-7018.[10] Zhou Q, Swager T M. Fluorescent chemosensors based on energy migration in conjugated polymers: The molecular wire approach to increased sensitivity [J]. J. Am. Chem. Soc., 1995, 117(50):12593-12602.[11] Thomas S W, Joly G D, Swager T M. Chemical sensors based on amplifying fluorescent conjugated polymers [J]. Chem. Rev., 2007, 107(4):1339-1386.[12] Yang J S, Swager T M. Porous shape persistent fluorescent polymer films: An approach to TNT sensory materials [J]. J. Am. Chem. Soc., 1998, 120(21):5321-5322.[13] Yang J S, Swager T M. Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects [J]. J. Am. Chem. Soc., 1998, 120(46):11864-11873.[14] Swager T M, Gil C J, Wrighton M S. Fluorescence studies of poly(p-phenyleneethynylene)s:the effect of anthracene substitution [J]. J. Phys. Chem., 1995, 99(14):4886-4892.[15] Zhao D, Swager T M. Sensory responses in solution vs solid state: A fluorescence quenching study of poly(iptycene-butadiynylene)s [J]. Macromolecules, 2005, 38(22):9377-9384.[16] Kokado K, Chujo Y. Emission via aggregation of alternating polymers with o-carborane and p-phenylene-ethynylene sequences [J]. Macromolecules, 2009, 42(5):1418-1420.[17] Bernius M T, Inbasekaran M, Wu W S, et al. Progress with light-emitting polymers [J]. Adv. Mater., 2000, 12(23): 1737-1750.[18] Pschirer N G, Bunz U H F. Poly(fluorenyleneethynylene)s by alkyne metathesis: Optical properties and aggregation behavior [J]. Macromolecules, 2000, 33(11):3961-3963.[19] Cao W, Dong H X, Cao Y, et al. Synthesis and optical and electroluminescent properties of novel polyfluorene/carbazole-based conjugated polyelectrolytes and their precursors [J]. Chin. J. Lumin. (发光学报), 2006, 27(3):206-210 (in Chinese).[20] Xu H L, Dong Y P, Tang B Z, et al. The relation between the structure of nitrobenzene derivatives and fluorescence quenching efficiency to the poly (2,5-dipentyloxy-para-phenylene ethynylene) [J]. Acta Polymerica Sinica (高分子学报), 2007(3):293-296 (in Chinese).[21] Naddo T, Moore J S, Zang L, et al. Detection of explosives with a fluorescent nanofibril film [J]. J. Am. Chem. Soc., 2007, 129(22):6978-6979.[22] Nie H R, Zhang M, Mullen K, et al. Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer [J]. Chem. Comm., 2011, 47(4):1234-1236.
0
浏览量
158
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构