浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院 研究生院, 北京 100039
收稿日期:2011-09-02,
修回日期:2011-10-15,
网络出版日期:2012-01-10,
纸质出版日期:2012-01-10
移动端阅览
贾辉, 陈一仁, 孙晓娟, 黎大兵, 宋航, 蒋红, 缪国庆, 李志明. 预通三甲基铝对AlN薄膜的结构与应变的影响[J]. 发光学报, 2012,33(1): 82-87
JIA Hui, CHEN Yi-ren, SUN Xiao-juan, LI Da-bing, SONG Hang, JIANG Hong, MIAO Guo-qing, LI Zhi-ming. Effect of Trimethyl-aluminum Preflow on The Structure and Strain Properties of AlN Films[J]. 发光学报, 2012,33(1): 82-87
贾辉, 陈一仁, 孙晓娟, 黎大兵, 宋航, 蒋红, 缪国庆, 李志明. 预通三甲基铝对AlN薄膜的结构与应变的影响[J]. 发光学报, 2012,33(1): 82-87 DOI: 10.3788/fgxb20123301.0082.
JIA Hui, CHEN Yi-ren, SUN Xiao-juan, LI Da-bing, SONG Hang, JIANG Hong, MIAO Guo-qing, LI Zhi-ming. Effect of Trimethyl-aluminum Preflow on The Structure and Strain Properties of AlN Films[J]. 发光学报, 2012,33(1): 82-87 DOI: 10.3788/fgxb20123301.0082.
采用有机金属化学气相沉积设备用两步生长法在(0001)蓝宝石衬底上制备AlN薄膜。研究了预通三甲基铝(TMAl)使衬底铝化对外延AlN的影响。利用高分辨X射线衍射(XRD)技术和扫描电子显微镜(SEM) 分析了样品的结晶质量以及外延膜中的残余应力。通过SEM观察发现
短时间的预通TMAl处理对AlN薄膜表面的影响不大;但随着预通时间的增加
表面会出现六角形的岛。通过优化TMAl的预通时间可以保护衬底被氮化有利于Al极性面AlN的生长
从而得到的Al极性面AlN表面比较平整;但是预通TMAl时间过长会使衬底表面沉积金属态铝而不容易形成平整的表面。X射线双晶摇摆曲线结果表明:样品的(0002)和(101 2)面的X射线双晶摇摆曲线的半峰宽随着预通TMAl时间的不断增加
由此得出薄膜的晶体质量不断下降。这可以解释为:预通TMAl使形成的晶核不再规则
从而在成核层形成了很多亚颗粒降低了晶体质量。进一步对XRD结果分析
我们也发现了这样的应力变化。这种应力的变化起源可以归结于内应力(岛的合并在其晶界引入的应力)与外应力(晶格失配与热失配引起的应力)共同作用的结果。
We studied the effects of trimethyl-aluminum (TMAl) preflow on the properties of AlN films grown on (0001) sapphire substrates via metalorganic chemical vapor deposition using high-temperature treatments. Short TMAl preflow treatments had little effect on the surface morphology of the AlN films
but hexagonal islands appeared on the surface when the TMAl preflow time increased. As the preflow time increased
the crystalline quality decreased and the stress state of the AlN films also changed. The origin of this stress behavior can be explained through a combination of extrinsic stress and intrinsic stress.
Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres [J]. Nature, 2006, 441(18):325-328.[2] Li J, Fan Z Y, Dahal R, et al. 200 nm deep ultraviolet photodetectors based on AlN [J]. Appl. Phys. Lett., 2006, 89 (21):213510-1-3.[3] Shatalow M, Gaevski M, Adivarahan V, et al. Room-temperature stimulated emission from AlN at 214 nm [J]. Jpn. J. Appl. Phys.Part 2, 2006, 45(29):L1286- L1288.[4] He Tao, Chen Yao, Li Hui, et al. Optimization of two-step AlN buffer of a-plane GaN films grown on r-plane sapphire by MOCVD [J]. Chin. J. Lumin. (发光学报), 2011, 32(4):363-367 (in English).[5] Miskys C R, Garrido J A, Nebel C E, et al. AlN/diamond heterojunction diodes [J]. Appl. Phys. Lett., 2003, 82(2):290-292.[6] Kipshidze G, Kuryatkov V, Zhu K, et al. AlN/AlGaInN superlattice light-emitting diodes at 280 nm [J]. J. Appl. Phys., 2003, 93(3):1363-1366.[7] Taniyashu Y, Kasu M, Makimoto T. Field emission properties of heavily Si-doped AlN in triode-type display structure [J]. Appl. Phys. Lett., 2004, 84(12):2115-2117.[8] Aubert T, Elmazria O, Assouar B, et al. Surface acoustic wave devices based on AlN/sapphire structure for high temperature applications [J]. Appl. Phys. Lett., 2010, 96(20):203503-1-3.[9] Eastman L F, Mishra U K. High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates [J]. IEEE Spectrum, 2004, 25(4):161-163.[10] Kappers M J, Moram M A, Sridhara Rao D V, et al. Low dislocation density GaN growth on high-temperature AlN buffer layers on (0001) sapphire [J]. J. Cryst. Growth, 2010, 312(3):363-367.[11] Xiang R F, Dai J N, Zhang L, et al. Effects of the thickness of low-temperature AlN interlayers on GaN layers grown on Si(111) substrates by MOCVD [J]. SPIE, 2009, 7518:751809-1-6.[12] Zhang P, Asif Khan M, Sun W H, et al. Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1-xN structures for deep ultraviolet emissions below 230 nm [J]. Appl. Phys. Lett., 2002, 81(23):4392-4394.[13] Nam K B, Li J, Nakarmi M L, et al. Deep ultraviolet picosecond time-resolved photoluminescence studies of AlN epilayers [J]. Appl. Phys. Lett., 2003, 82(11):1694-1696.[14] Bai J, Wang T, Parbrook P J, et al. A study of dislocations in AlN and GaN films grown on sapphire substrates [J]. J. Cryst. Growth, 2005, 282(3-4):290-296.[15] Paduano Q S, Weyburne D W, Jasinski J, et al. Effect of initial process conditions on the structural properties of AlN films [J]. J. Cryst. Growth, 2004, 261(2-3):259-265.[16] Jasinski J, Liliental Weber Z, Paduano Q S, et al. Inversion domains in AlN grown on (0001) sapphire [J]. Appl. Phys. Lett., 2003, 83 (14):2811-2813.[17] Wu Y, Hanlon A, Kaeding J F, et al. Effect of nitridation on polarity, microstructure, and morphology of AlN films [J]. Appl. Phys. Lett., 2004, 84(12):912-914.[18] Cao J, Li S, Fan G, et al. The influence of the Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (111) substrate [J]. J. Cryst. Growth, 2010, 312(14):2044-2048.[19] Chen P, Zhang R, Zhao Z M, et al. Growth of high quality GaN layers with AlN buffer on Si(111) substrates [J]. J. Cryst. Growth, 2001, 225(2-4):150-154.[20] Lobanova A V, Yakovlev E V, Talalaev R A, et al. Growth conditions and surface morphology of AlN MOVPE [J]. J. Cryst. Growth, 2008, 310(23):4935-4938.[21] Hubbard S M, Zhao G, Pavlidis D, et al. High-resistivity GaN buffer templates and their optimization for GaN-based HFETs [J]. J. Cryst. Growth, 2005, 284(3-4):297-305.[22] Wright A F. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN [J]. J. Appl. Phys., 1997, 82(6):2833-2839.[23] Iwanaga H, Kunishige A, Takeuchi S. Anisotropic thermal expansion in wurtzite-type crystals [J]. J. Mater. Sci., 2000, 35(10):2451-2454.[24] Hiramatus K, Detchprohm T, Akasaki I. Relaxation mechanism of thermal stresses in the heterostructure of GaN grown on sapphire by vapor phase epitaxy [J]. Jpn. J. Appl. Phys., 1993, 32(12):1528-1533.[25] Wan K, Porporati A A, Feng G, et al. Biaxial stress dependence of the electrostimulated near-band-gap spectrum of GaN epitaxial film grown on (0001) sapphire substrate [J]. Appl. Phys. Lett., 2006, 88(25):251910-1-3.[26] Hoffman R W. Stresses in thin films: The relevance of grain boundaries and impurities [J]. Thin Solid Films, 1976, 34(2):185-190.[27] Raghavan S, Redwing J M. Intrinsic stresses in AlN layers grown by metal organic chemical vapor deposition on (0001) sapphire and (111) Si substrates [J]. J. Appl. Phys., 2004, 96(5):2995-3003.[28] Rajamani A, Beresford R, Sheldon B W. Intrinsic stress evolution in aluminum nitride thin films and the influence of multistep processing [J]. Appl. Phys. Lett., 2001, 79(23):3776-3778.
0
浏览量
149
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构