浏览全部资源
扫码关注微信
电子科技大学光电信息学院 电子薄膜与集成器件国家重点实验室, 四川 成都 610054
收稿日期:2011-01-25,
修回日期:2011-06-24,
网络出版日期:2012-01-10,
纸质出版日期:2012-01-10
移动端阅览
李青, 赵娟, 王琦, 于军胜. 间隔层对双发光层白色有机电致发光器件性能的影响[J]. 发光学报, 2012,33(1): 45-50
LI Qing, ZHAO Juan, WANG Qi, YU Jun-sheng. Effect of Spacer on White Organic Light-emitting Devices Consisted of Double Light-emitting Layers[J]. 发光学报, 2012,33(1): 45-50
李青, 赵娟, 王琦, 于军胜. 间隔层对双发光层白色有机电致发光器件性能的影响[J]. 发光学报, 2012,33(1): 45-50 DOI: 10.3788/fgxb20123301.0045.
LI Qing, ZHAO Juan, WANG Qi, YU Jun-sheng. Effect of Spacer on White Organic Light-emitting Devices Consisted of Double Light-emitting Layers[J]. 发光学报, 2012,33(1): 45-50 DOI: 10.3788/fgxb20123301.0045.
采用蓝色bis (FIrpic)和黄色bis iridium(acetylacetonate) 两种磷光染料
制备了双发光层结构的白色有机电致发光器件
器件结构为ITO/TAPC (30 nm)/host: (t-bt)
2
Ir(acac) /spacer (
x
nm)/host: FIrpic (15 nm
8%)/Bphen (40 nm)/Mg∶Ag (200 nm)。分别选用p型1
1-bis cyclohexane (TAPC)和n型tris borane (3TPYMB)作为主体材料制备了两种类型的器件
通过在两个发光层之间加入一层较薄的间隔层进行器件优化。结果表明
加入间隔层之后
器件性能得到提高
获得了色稳定性较好的白光器件。当主体为TAPC时
使用间隔层后器件取得最大亮度为19 550 cd/m
2
最大电流效率为8.3 cd/A;当主体为3TPYMB时
使用间隔层后器件的最大亮度为1 950 cd/m
2
最大电流效率为30.7 cd/A。实验结果表明
器件性能的提高
是由于加入了间隔层之后载流子复合区域拓宽
促进了发光层中电子和空穴的平衡。
White organic light-emitting devices (WOLEDs) with double light-emitting layers (EMLs) were fabricated
which were based on phosphorescent blue bis[3
5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium Ⅲ](FIrpic) and yellow bis[2-(4-tertbutylphenyl)benzothiazolato-N
C
2'
] iridium (acetylacetonate) [(t-bt)
2
Ir(acac)]. Device structure was given as:ITO/TAPC (30 nm)/host:(t-bt)
2
Ir(acac)[(10-
x
) nm
4%]/spacer (
x
nm)/host:FIrpic (15 nm
8%)/Bphen (40 nm)/Mg∶Ag (200 nm)
while p-type 1
1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and n-type tris[3-(3-pyridyl)-mesityl]
borane (3TPYMB) was separately employed as the host
and device optimization was made by introducing a spacer between the two EMLs. The results showed that
compared with that of spacer-without device
the devices employed a spacer yielded higher device performance as well as stable white emission. For TAPC as the host
a device with spacer obtained maximum luminance of 19 550 cd/m
2
and power efficiency of 8.3 cd/A
while 3TPYMB as the host
a device with spacer achieved maximum luminance of 1 950 cd/m
2
and power efficiency of 30.7 cd/A. It was suggested that by incorporating a spacer in the WOLEDs
charge carrier recombination zone was broadened
and electron-hole balance was improved in the EMLs.
Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency [J]. Nature, 2009, 459(7244):234-238.[2] Sun Y, Giebink C N, Kanno H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature, 2006, 440(7086):908-912.[3] Jou J H, Shen S M, Chen S H. Highly efficient orange-red phosphorescent organic light-emitting diode using 2,7-bis(carbazo-9-yl)-9,9-ditolyfluorene as the host [J]. Appl. Phys. Lett., 2010, 96(14):143306-1-3.[4] Mi B X, Wang P F, Gao Z Q, et al. Strong luminescent Iridium complexes with C^N-N structure in ligands and their potential in efficient and thermally stable phosphorescent OLEDs [J]. Adv. Mater., 2009, 21(3):339-343.[5] Wang Q, Ding J Q, Ma D G, et al. Manipulating charges and excitons within a single-host system to accomplish efficiency/ CRI/color-stability trade-off high-performance OWLEDs [J]. Adv. Mater., 2009, 21(23):2397-2401.[6] Han C M, Xie G H, Xu H, et al. A single phosphine oxide host for high-efficieny white organic light-emitting diodes with extremely low operating voltages and reduced efficiency roll-off [J]. Adv. Mater., 2011, 23(21):2491-2496.[7] Zhang X B, Wei F X, Liu X, et al. Study on energy relation between blue and red emissive layer of organic light-emitting diodes by inserting spacer layer [J]. Thin Solid Films, 2010, 518(23):7119-7123.[8] Wang Q, Ding J Q, Ma D G, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: Fabrication and emission mechanism analysis [J]. Adv. Funct. Mater., 2009, 19(1):84-95.[9] Seo J H, Park J S, Lee S J, et al. Codoped spacer ratio effect of hybrid white organic light-emitting diodes [J]. Curr. Appl. Phys., 2011, 11(3):564-567.[10] Zhao J, Yu J S, Wen W, et al. Electroluminescent performance and spectral characteristics of a novel (t-bt)2Ir(acac) phosphorescent iridium complex [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2011, 31(5):1-4 (in Chinese).[11] Borsenberger P M, Pautmeier L, Richert R, et al. Hole transport in 1,1-bis(di-4-tolylaminophenyl)cyclohexane [J]. J. Chem. Phys., 1991, 94(12):8276-8281.[12] Zhao J, Yu J S, Li L, et al. Effect of ultrathin layer thickness of iridium complex phosphor (t-bt)2Ir(acac) on the performance of organic light-emitting devices [J]. Journal of OptoelectronicsLaser (光电子激光), 2011, 22(2):171-174 (in Chinese).[13] Tanaka D, Agata Y, Takeda T, et al. High luminous efficiency blue organic light-emitting devices using high triplet excited energy materials [J]. J. Appl. Phys., 2007, 46(5):L117-L119.[14] Wang Q, Ding J Q, Ma D G, et al. Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off [J]. Appl. Phys. Lett., 2009, 94(10):103503-1-3.[15] Liao Y Q, Cheng H, Liu X Y. Effect of PrF3 anode buffer layer on the performance of OLED [J]. Chin. J. Lumin. (发光学报), 2011, 32(9):1171-1174 (in Chinese).
0
浏览量
159
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构