浏览全部资源
扫码关注微信
发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
收稿日期:2011-08-30,
修回日期:2011-11-01,
网络出版日期:2012-01-10,
纸质出版日期:2012-01-10
移动端阅览
邵聪, 刘学彦, 赵家龙. 巯基丙酸分子对CdSe核壳量子点和 ZnO纳米粒子薄膜之间电荷转移的影响[J]. 发光学报, 2012,33(1): 26-31
SHAO Cong, LIU Xue-yan, ZHAO Jia-long. Effect of Mercaptopropionic Acid Molecules on Electron Transfer from CdSe Core/Shell Quantum Dots to ZnO Nanocrystal Films[J]. 发光学报, 2012,33(1): 26-31
邵聪, 刘学彦, 赵家龙. 巯基丙酸分子对CdSe核壳量子点和 ZnO纳米粒子薄膜之间电荷转移的影响[J]. 发光学报, 2012,33(1): 26-31 DOI: 10.3788/fgxb20123301.0026.
SHAO Cong, LIU Xue-yan, ZHAO Jia-long. Effect of Mercaptopropionic Acid Molecules on Electron Transfer from CdSe Core/Shell Quantum Dots to ZnO Nanocrystal Films[J]. 发光学报, 2012,33(1): 26-31 DOI: 10.3788/fgxb20123301.0026.
通过稳态光谱和时间分辨荧光光谱研究了巯基丙酸(MPA)分子对由量子点到ZnO纳米粒子薄膜的电荷转移过程的影响。研究发现
相对于CdSe纳米粒子薄膜样品
没有MPA分子参与作用的CdSe/ZnO薄膜样品和有MPA分子连接的CdSe/MPA/ZnO薄膜样品中都存在从CdSe量子点到ZnO纳米粒子薄膜的有效电荷分离过程
但是相对于CdSe/ZnO样品
CdSe/MPA/ZnO样品中电荷转移速率明显变小。这表明MPA分子本身它并不能促进CdSe到ZnO电荷分离过程
因此可以认为用金属氧化物薄膜直接吸附量子点吸收材料
将能获得高功率转换效率的量子点敏化太阳能电池。
The effect of mercaptopropionic acid (MPA) molecules on the charge transfer process from the quantum dots to ZnO nanocrystal films was studied in this paper by the steady-state and time-resolved photoluminescence spectroscopy. The obtained high efficiently photoluminescent CdSe-core CdS/ZnS-multishell quantum dots with few defects are air stable in quantum dot based devices. Three samples were prepared to make the measurements of time-resolved photoluminescence spectra
CdSe quantum dots film
CdSe quantum dots spun cast on ZnO nanocrystal film (CdSe/ZnO)
and MPA molecules linked CdSe quantum dots and ZnO nanocrystal film (CdSe/MPA/ZnO). The shortening of photoluminescence life times of CdSe quantum dots deposited on ZnO nanocrystal films with and without MPA molecules indicated the electron transfer process happened in the interface between CdSe quantum dots and ZnO nanocrystals. But the decreased rate of electron transfer from CdSe quantum dots to ZnO nanocrystal films with MPA molecules was found
compared to the electron transfer rate of the CdSe/ZnO sample. Considering the fact that MPA molecules did not improve the charge transfer process from CdSe quantum dots to ZnO nanocrystal films
it was indicated that the MPA molecules was not a good choice in CdSe quantum dot sensitized solar cell. The experimental result suggested that the direct adsorption of CdSe quantum dots on metal oxide nanocrystal films would obtain quantum dot sensitized solar cell with higher power conversion efficiency.
Talapin D V, Lee J S, Kovalenko M V, et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications [J]. Chem. Rev., 2010, 110(1):389-458.[2] Nozik A J. Nanoscience and nanostructures for photovoltaics and solar fuels [J]. Nano Lett., 2010, 10(8):2735-2741.[3] Katari J E B, Colvin V L,Alivisatos A P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of nanocrystal surface [J]. J. Phys. Chem., 1994, 98(15):4109-4117.[4] Greenham N C, Peng X, Alivisatos A P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Phys. Rev. B, 1996, 54(24):17628-17637.[5] Peng X G, Schlamp M C, Kadavanich A V, et al. Epotaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility [J]. J. Am. Chem. Soc., 1997, 119(30):7019-7029.[6] Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals [J]. J. Phys. Chem., 1996, 100(2):468-471.[7] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE(E=Sulfur, Selenium, Tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc., 1993, 115(19):8706-8715.[8] Porter V J, Geyer S, Halpert J E, et al. Photoconduction in annealed and chemically treated CdSe/ZnS inorganic nanocrystal films [J]. J. Phys. Chem. C, 2008, 112(7):2308-2316.[9] Robel I, Subramanian V, Kuno Masaru, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. J. Am. Chem. Soc., 2006, 128(7):2385-2393.[10] Zhang Youlin, Zeng Qinghui, Kong Xianggui. The influence of bioconjugate process on the photoluminescence properties of water-soluble CdSe/ZnS core-shell quantum dots capped with polymer [J]. Chin. J. Lumin.(发光学报), 2010, 31(1):101-104 (in Chinese).[11] Sambur J B, Parkinson B A. CdSe/ZnS core/shell quantum dot sensitization of low index TiO2 single crystal surfaces [J]. J. Am. Chem. Soc., 2010, 132(7):2130-2131.[12] Guijarro N, Lana-Villarreal T, Mora-Sero I, et al. CdSe quantum dot-sensitized TiO2 electrodes: effect of quantum dot coverage and mode of attachment [J]. J. Phys. Chem. C, 2009, 113(10):4208-4214.[13] Dibbell R S, Watson D F. Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles [J]. J. Phys. Chem. C, 2009, 113(8):3139-3149.[14] Volker J, Zhou X Y, Ma X D, et al. Semiconductor nanocrystals with adjustable hole acceptors: tuning the fluorescence intensity by metal-ion binding [J]. Angew. Chem. Int. Ed., 2010, 49(38):6865-6868.[15] Schwartz D A, Norberg N S, Nguyen Q P, et al. Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals [J]. J. Am. Chem. Soc., 2003, 125(43):13205-13218.[16] Tvrdy K, Frantsuzov P A, Kamat P V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles [J]. PNAS, 2011, 108(1):29-34.[17] Wuister S F, Donega C D, Meijerink A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots [J]. J. Phys. Chem. B, 2004, 108(45):17393-17397.[18] Kongkanand A, Tvrdy K, Takechi K, et al. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture [J]. J. Am. Chem. Soc., 2008, 130(12):4007-4015.[19] Zhu H M, Song N H, Lian T Q. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses [J]. J. Am. Chem. Soc., 2010, 132(42):15038-15045.
0
浏览量
162
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构