浏览全部资源
扫码关注微信
1. 四川大学 材料科学与工程学院, 四川 成都 610065
2. 重庆文理学院 材料交叉学科研究中心 重庆市高校微纳米材料工程与技术重点实验室, 重庆 402168
收稿日期:2011-08-30,
修回日期:2011-10-27,
网络出版日期:2012-01-10,
纸质出版日期:2012-01-10
移动端阅览
蒲勇, 朱达川, 韩涛. 蓝光激发白光LED用深红色荧光粉 Ca<sub>1-<em>x-y</em></sub>WO<sub>4</sub>∶<em>x</em>Pr<sup>3+</sup>, <em>y</em>Li<sup>+</sup>的制备与表征[J]. 发光学报, 2012,33(1): 12-16
PU Yong, ZHU Da-chuan, HAN Tao. Preparation and Characterization of Ca<sub>1-<em>x-y</em></sub>WO<sub>4</sub>∶<em>x</em>Pr<sup>3+</sup>,<em>y</em>Li<sup>+</sup> Deep Red Phosphors for White LEDs Excited by Blue Light[J]. 发光学报, 2012,33(1): 12-16
蒲勇, 朱达川, 韩涛. 蓝光激发白光LED用深红色荧光粉 Ca<sub>1-<em>x-y</em></sub>WO<sub>4</sub>∶<em>x</em>Pr<sup>3+</sup>, <em>y</em>Li<sup>+</sup>的制备与表征[J]. 发光学报, 2012,33(1): 12-16 DOI: 10.3788/fgxb20123301.0012.
PU Yong, ZHU Da-chuan, HAN Tao. Preparation and Characterization of Ca<sub>1-<em>x-y</em></sub>WO<sub>4</sub>∶<em>x</em>Pr<sup>3+</sup>,<em>y</em>Li<sup>+</sup> Deep Red Phosphors for White LEDs Excited by Blue Light[J]. 发光学报, 2012,33(1): 12-16 DOI: 10.3788/fgxb20123301.0012.
用高温固相法合成了用于白光LED的Ca
1-
x-y
WO
4
∶
x
Pr
3+
y
Li
+
红色荧光粉。用XRD、SEM和荧光分光光度计
对试样的晶体结构、表面形貌和发光性能进行表征。所合成的样品为四方晶系。经预先球磨的样品颗粒比较均匀
粒径较小。荧光粉的激发峰位于440~500 nm的宽带内
主要发射峰位于602
620
651 nm
对应于Pr
3+
的
1
D
2
3
H
4
、
3
P
0
3
H
6
和
3
P
0
3
F
2
特征跃迁发射
651 nm处的强度最大。同时还研究了Pr
3+
、Li
+
的掺杂浓度以及助熔剂的加入对样品性能的影响。实验结果表明
所合成的Ca
1-
x-y
WO
4
∶
x
Pr
3+
y
Li
+
是可用于蓝光芯片激发的白光LED用红色荧光粉。
A series of Ca
1-
x-y
WO
4
∶
x
Pr
3+
y
Li
+
deep red phosphors have been synthesized for white LEDs by high temperature solid state reaction. The crystal structure
surface morphology and spectral characteristics of the samples were investigated by the use of X-ray diffraction (XRD)
SEM and fluorescence spectrophotometer. It is found that the synthesized crystalline powders are tetragonal system CaWO
4
. The particle size of pre-milling sample is more uniform and smaller than the manual grinded sample. The excitation-peaks are between 440 and 500 nm
and the main emission-peaks are located at 602
620
651 nm (Pr
3+
ion of
1
D
2
3
H
4
3
P
0
3
H
6
3
P
0
3
F
2
transition). The peak at 651 nm has the strongest relative luminous intensity. The effects of doping density of Pr
3+
Li
+
calcining temperature and the addition of flux on the characteristics of luminescence have also been investigated. It shows that the Ca
1-
x-y
WO
4
∶
x
Pr
3+
y
Li
+
can be used as red phosphors for blue light chips based white LEDs.
Shen Chao, Shao Qiyue, Han Xuelin, et al. Luminescent properties of Ca8Mg(SiO4)4Cl2∶Eu2+, Dy3+phosphor for white LED [J]. Chin. J. Lumin.(发光学报), 2010, 31(1):44-48 (in Chinese).[2] Li Xueming, Tao Chuanyi, Kong Lingfeng, et al. Synthesis and luminescent characterization of submicron-sized Y3Al5O12∶ Ce3+yellow phosphor by coprecipitation method [J]. Chin. J. Inor. Chem.(无机化学学报), 2007, 23(8):1409-1414 (in Chinese).[3] Cao Fabin, Tian Yanwen, Chen Yongjie, et al. Improved luminous properties of red emitting phosphors for LED application by charge compensation [J]. Acta Physico-Chemico Sinica (物理化学学报), 2009, 25(2):299-303 (in Chinese).[4] Lee J K, Lee J H, Woo E J, et al. Synthesis of nanosized Ce3+, Eu3+ co-doped YAG phosphor in a continuous supercritical water system [J]. Ind. Eng. Chem. Res., 2008, 47(16):5994-6000.[5] Zhang Ruixi, Wang Haibo, Huang Ruxi, et al. Preparation and package performances of red phosphor for LED [J]. Chin. J. Lumin.(发光学报), 2010, 31(3):305-310 (in English).[6] Chen Jin, Gong Xinghong, Lin Yanfu, et al. Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors [J]. J. Alloys Compd., 2010, 492(1-2):667-670.[7] Czaja M, Bodyl S, Gfluchowski P, et al. Luminescence properties of rare earth ions in fluorite, apatite and scheelite minerals [J]. J. Alloys Compd., 2008, 451(1-2):290-292.[8] Xi Cuisheng, Gao Yuanzhe, Wang Ping, et al. Synthesis and luminescent properties of LiGd(MoO4)∶Eu3+ red phosphors for white LEDs [J]. Chin. J. Lumin.(发光学报), 2010, 31(3):312-315 (in Chinese).[9] Liao Jinsheng, You Hangying, Qiu Bao, et al. Photoluminescence properties of NaGd(WO4)2∶Eu3+ nanocrystalline prepared by hydrothermal method [J]. Curr. Appl. Phys., 2011,11(3):503-507.[10] Wei Qiong, Chen Donghua. Luminescence properties of coactivated Gd (Ⅲ) tungstate phosphor for light-emitting diodes [J]. Opt. Laser Technol., 2009, 41:783-787.[11] Krumpel A H, Van der Kolk E, Dorenbos P. Energy level diagram for lanthanide-doped lanthanum orthovanadate [J]. Mater. Sci. Eng. B, 2008, 146(1):114-120.[12] Zheng Ziqiao, Li Hongying. Functional Materials of Rare Earth [M]. Beijing: Chemical Industry Press, 2003:166.[13] Yang Xuyong, Yu Xibin, Yang Hong, et al. The investigation of optical properties by doping halogen in the BaMoO4∶Pr3+ phosphor system [J]. J. Alloys Compd., 2009, 479(1-2):307-309.[14] Li Lingli, Shen Xiangqian, Li Lei, et al. Preparation and characterization of Li0.25Sr0.5(MoO4)∶Eu3+0.25 red-emitting phosphors for white LEDs by organicgel-thermal decomposition process [J]. Sol-Gel Sci Technol., 2011, 57(1):198-203.[15] Deren P J, Pazik R, Strek W. Synthesis and spectroscopic properties of CaTiO3 nanocrystals doped with Pr3+ ions [J]. J. Alloys Compd., 2008, 451(1-2):595-599.[16] Yang H, Kim Y S. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG∶Ce nanocrystalline phosphors [J]. J. Lumin., 2008, 128:1570-1576.[17] Boutinaud P, Mahiou R, Cavalli E, et al. Red luminescence induced by intervalence charge transfer in Pr3+-doped compounds [J]. J. Lumin., 2007, 122-123:430-433.[18] Bai Shengmao, Wang Jing, Miao Hongli, et al. Luminescence properties of the Y3-x-yPrxGdyAl5O12∶Ce3+ phosphors for white light emitting diodes [J]. Acta Optica Sinica (光学学报), 2010, 30(5):1042-1045 (in Chinese).
0
浏览量
66
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构