浏览全部资源
扫码关注微信
南开大学 物理科学学院 天津,300071
收稿日期:2011-02-09,
修回日期:2011-06-17,
网络出版日期:2011-08-22,
纸质出版日期:2011-08-22
移动端阅览
刘海旭, 孙甲明, 孟凡杰, 侯琼琼. Er离子注入的富硅SiO<sub>2</sub> MOS-LED的可见和红外电致发光特性[J]. 发光学报, 2011,32(8): 749-754
LIU Hai-xu, SUN Jia-ming, MENG Fan-jie, HOU Qiong-qiong. Visible and Infrared Electroluminescence Property of Erbium Doped Silicon-rich SiO<sub>2</sub> MOS-LED[J]. Chinese Journal of Luminescence, 2011,32(8): 749-754
刘海旭, 孙甲明, 孟凡杰, 侯琼琼. Er离子注入的富硅SiO<sub>2</sub> MOS-LED的可见和红外电致发光特性[J]. 发光学报, 2011,32(8): 749-754 DOI: 10.3788/fgxb20113208.0749.
LIU Hai-xu, SUN Jia-ming, MENG Fan-jie, HOU Qiong-qiong. Visible and Infrared Electroluminescence Property of Erbium Doped Silicon-rich SiO<sub>2</sub> MOS-LED[J]. Chinese Journal of Luminescence, 2011,32(8): 749-754 DOI: 10.3788/fgxb20113208.0749.
通过Er离子和Si离子注入并结合高温退火制备了Er掺杂的富硅SiO
2
薄膜以及ITO/SiON/富硅SiO
2
∶Er/Si MOS结构电致发光器件。研究了富Si浓度的变化对Er
3+
离子掺杂的电致发光器件的发光性能和传导特性的影响。发现不同Si含量对Er
3+
离子的不同能级的电致发光会产生不同作用。在富Si量小于5%的条件下
主要由Si离子注入产生氧空位缺陷发光中心(Si-ODC)
它们和Er
3+
离子的高能级之间存在着共振能量传递
增强了Er
3+
离子的522 nm绿色发光峰强度。在富Si含量大于5%时
过量的Si在退火时形成了纳米硅微晶
电子在纳米硅微晶之间的隧穿改变了载流子输运机制
降低了过热电子的平均能量
导致Er
3+
离子的所有发光峰的猝灭。
Metal-oxide-semiconductor structure of ITO/Si-rich SiO
2
∶Er/Si containing erbium ions and silicon nanocrystals was fabricated by ion implantation of Si and Er combined with post-annealing. The electroluminescence spectra and current-voltage characteristics were measured to investigate the influence of silicon concentration on the excitation mechanism of luminescence centers and conductance process. It was found that the excitation mechanism of erbium ions was variational in the MOS-LED with silicon content. For the silicon concentration less than 5%
the upper levels of erbium can be excited by resonant energy transfer from silicon-oxygen deficiency centers
which induce an enhancement of the 522 nm peak emission intensity of Er
3+
ion. For the silicon concentration above 5%
the excess silicon formed silicon nanocrystals by post-annealing. The direct tunneling of electrons between silicon nanocrystals dominate the conductance
resulting a decrease of average energy of hot electrons and quenching of all the electroluminescence peaks of erbium.
Fujii M, Yoshida M, Kanzawa Y, et al. 1.54 m photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ [J]. Appl. Phys. Lett., 1997, 71 (9):1198-1200.[2] Kik P G, Polman A. Exciton-erbium interactions in Si nanocrystal-doped SiO2 [J]. J. Appl. Phys., 2000, 88 (4):1992-1998.[3] Garca C, Pellegrinoa P, Leboura Y, et al. Maximum fraction of Er3+ ions optically pumped through Si nanoclusters [J]. J. Lumin., 2006, 121 (2):204-208.[4] Iacona F, Pacifici D, Irrera A, et al. Electroluminescence at 1.54 m in Er-doped Si nanocluster-based devices [J]. Appl. Phys. Lett., 2002, 81 (17):3242-3244.[5] Nazarov A, Sun J M, Skorupa W, et al. Light emission and charge trapping in Er-doped silicon dioxide films containing silicon nanocrystals [J]. Appl. Phys. Lett., 2005, 86 (15):151914-1-3.[6] Sun J M, Skorupa W, Dekorsy T, et al. On the mechanism of electroluminescence excitation in Er-doped SiO2 containing silicon nanoclusters [J]. Opt. Mat., 2005, 27 (5):1050-1054.[7] Priolo F, Presti C D, Franz, et al. Carrier-induced quenching processes on the erbium luminescence in silicon nanocluster devices [J]. Phys. Rev. B, 2006, 73 (11):113302-1-4.[8] Jambois O, Berencen Y, Hijazi K, et al. Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions [J]. J. Appl. Phys., 2009, 106 (6):063526-1-6.[9] Song H Z, Bao X M, Visible photoluminescence from silicon-ion-implanted SiO2 film and its multiple mechanisms [J]. Phys. Rev. B, 1997, 55 (11):6988-6993.[10] Lin G R, Lin C J, Lin C K, et al. Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2 [J]. J. Appl. Phys., 2005, 97 (9):094306-1-8.[11] Cueff S, Labbe C, Dierre B, et al. Investigation of emitting centers in SiO2 codoped with silicon nanoclusters and Er3+ ions by cathodoluminescence technique [J]. J. Appl. Phys., 2010, 108 (11):113504-1-8.[12] Sun J M, Rebohle L, Prucnal S, et al. Giant stability enhancement of rare-earth implanted SiO2 light emitting devices by an additional SiON protection layer [J]. Appl. Phys. Lett., 2008, 92 (7):071103-1-3.[13] Kanjilal A, Rebohle L, Skorupa W, et al. Correlation between the microstructure and electroluminescence properties of Er-doped metal-oxide semiconductor structures [J]. Appl. Phys. Lett., 2009, 94 (10):101916-1-3.[14] Kanjilal A, Rebohle L, Voelskow M, Skorupa, et al. Enhanced blue-violet emission by inverse energy transfer to the Ge-related oxygen deficiency centers via Er3+ ions in metal-oxide semiconductor structures [J]. Appl. Phys. Lett., 2009, 94 (5):051903-1-3.[15] DiMaria D J, Kirtley J R, Pakulis E J, et al. Electroluminescence studies in silicon dioxide films containing tiny silicon islands [J]. J. Appl. Phys., 1984, 56 (2):401-416.
0
浏览量
68
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构