浏览全部资源
扫码关注微信
1. 中国科学院长春应用化学研究所高分子物理与化学国家重点实验室,吉林 长春,130022
2. 集成光电子学国家重点联合实验室吉林大学实验区 吉林大学电子科学与工程学院,吉林 长春,130012
3. 中国科学院 激发态物理重点实验室 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2011-01-15,
修回日期:2011-03-14,
网络出版日期:2011-07-22,
纸质出版日期:2011-07-22
移动端阅览
王伟, 马东阁, 高强, 石家纬, 曹军胜. 多层栅介质层有机薄膜晶体管的存储与光响应特性[J]. 发光学报, 2011,32(7): 729-735
WANG Wei, MA Dong-ge, GAO Qiang, SHI Jia-wei, CAO Jun-sheng. Memory and Photo-responses Characteristics of Organic Thin Film Transistors Based on Multi-layer Gate Dielectric[J]. Chinese Journal of Luminescence, 2011,32(7): 729-735
王伟, 马东阁, 高强, 石家纬, 曹军胜. 多层栅介质层有机薄膜晶体管的存储与光响应特性[J]. 发光学报, 2011,32(7): 729-735 DOI: 10.3788/fgxb20113207.0729.
WANG Wei, MA Dong-ge, GAO Qiang, SHI Jia-wei, CAO Jun-sheng. Memory and Photo-responses Characteristics of Organic Thin Film Transistors Based on Multi-layer Gate Dielectric[J]. Chinese Journal of Luminescence, 2011,32(7): 729-735 DOI: 10.3788/fgxb20113207.0729.
在真空室内一次性制备了具有多层栅介质层结构的有机薄膜晶体管(OTFTs)。结果表明
制备的OTFTs具有电控开关、存储和光敏多重功能特性。分析认为
存储特性归功于器件的结构
采用了分离的CaF
2
纳米粒子岛作为电荷俘获中心。在光照环境下
观察到了两种不同类型的光响应特性。快速的光响应来自于有源层吸收了能量大于带隙的光子所产生的可移动的电荷
慢的光响应归因于电场作用下光感应的电子在栅介质陷阱的俘获与释放。
The organic thin film transistors (OTFTs) based on multi-layer gate dielectric were presented without vacuum breaks. As a result
the OTFTs show multi-functional properties
such as electric-switching
memory
and photosensitive. The memory effect was attributed to the structure of OTFTs
i.e.
the utilization of the separated CaF
2
nanoparticle islands acting as the charge trapping centers. The photo-responses included two different types of fast response and slow response
and are
respectively
originated from the generation of mobile carriers by the absorption of photo energy higher than the band gap energy of semiconductor and the tapped and released of photo-induced electrons by the traps in the dielectric at the electrical field modulation.
Shtein M, Mapel J, Benziger J B, et al. Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors [J]. Appl. Phys. Lett., 2002, 81 (2):268-270.[2] Salleo A, Chabinyc M L, Yang M S, et al. Polymer thin-film transistors with chemically modified dielectric interfaces [J]. Appl. Phys. Lett., 2002, 81 (23):4383-4385.[3] Zhang X H, Domercq B, Kippelena B. High-performance and electrically stable C60 organic field-effect transistors [J]. Appl. Phys. Lett., 2007, 91 (9):092114-1-3.[4] Dimitrakopoulos C D, Purushothaman S, Kymissis J, et al. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators [J]. Science, 1999, 283 (5403):822-824.[5] Klauk H, Halik M, Zschieschang U, et al. High-mobility polymer gate dielectric pentacene thin film transistors [J]. J. Appl. Phys., 2002, 92 (9):5259-5263.[6] Bao Z, Dodabalapur A, Lovinger A J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J]. Appl. Phys. Lett., 1996, 69 (26):4108-4110.[7] Wang G, Swensen J, Moses D, et al. Increased mobility from regioregular poly(3-hexylthiophene)for thin film field-effect transistors [J]. J. Appl. Phys., 2003, 93 (10):6137-6141.[8] Lin Y Y, Gundlach D J, Nelson S F, et al. Stacked pentacene layer organic thin film transistors with improved characte-ristics [J]. IEEE Elec. Dev. Lett., 1997, 18 (12):606-608.[9] Kelley T, Boardman L D, Dunbar T D, et al. High-performance OTFTs using surface-modified alumina dielectrics [J]. J. Phys. Chem. B, 2003, 107 (24):5877-5881.[10] Jurchescu O D, Baas J, Palstra T T M. Effect of impurities on the mobility of single crystal pentacene [J]. Appl. Phys. Lett., 2004, 84 (16):3061-3063.[11] Sirringhaus H, Tessler N, Friend R H. Integrated optoelectronic devices based on conjugated polymers [J]. Science, 1998, 280 (5370):1741-1744.[12] Zhou Lisong, Wanga A, Wu Shengchu, et al. All-organic active matrix flexible display [J]. Appl. Phys. Lett., 2006, 88 (8):083502-1-3.[13] Drury C J, Mutsaers C M J, Hart C M, et al. Low-cost all-polymer integrated circuits [J]. Appl. Phys. Lett., 1998, 73 (1):108-110.[14] Hepp A, Heil H, Weise W, et al. Light-emitting field-effect transistor based on a tetracene thin film [J]. Phys. Rev. Lett., 2003, 91 (15):157406-1-4.[15] Schroeder R, Majewski L A, Grell M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator [J]. Adv. Mater., 2004, 16 (7):633-636.[16] Baeg K J, Noh Y Y, Ghim J, et al. Organic non-volatile memory based on pentacene field-effect transistors using a polymeric gate electret [J]. Adv. Mater., 2006, 18 (23):3179-3183.[17] Zhu Z T, Mason J T, Dieckmann R, et al. Humidity sensors based on pentacene thin-film transistors [J]. Appl. Phys. Lett., 2002, 81 (24):4643-4645.[18] Noh Y Y, Kim D Y. Organic phototransistor based on pentacene as an efficient red light sensor [J]. Solid-State Electronics, 2007, 51 (7):1052-1055.[19] Wang Wei, Shi Jiawei, Guo Shuxu, et al. Improved performance by a double-insulator layer in organic thin-film transistors [J]. Chin. Phys. Lett., 2006, 23 (11):3108-3110.[20] Wang Wei, Shi Jiawei, Ma Dongge. Organic thin-film transistor memory with nanoparticle floating gate [J]. IEEE Trans. Elec. Dev., 2009, 56 (5):1036-1039.[21] Noh Y Y, Kim D Y, Yase K. Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance [J]. J. Appl. Phys., 2005, 98 (7):074505-1-7.[22] Debucquoy M, Verlaak S, Stoedel S, et al. Pentacene organic field-effect phototransistor with memory-effect [J]. SPIE, 2006, 6192 :61921F-1-10.[23] Johnson N M, Chiang A. Highly photosensitive transistors in single-crystal silicon thin films on fused silica [J]. Appl. Phys. Lett., 1984, 45 (10):1102-1104.
0
浏览量
198
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构