浏览全部资源
扫码关注微信
华东师范大学 极化材料和器件教育部重点实验室 上海,200241
收稿日期:2011-02-10,
修回日期:2011-05-15,
网络出版日期:2011-07-22,
纸质出版日期:2011-07-22
移动端阅览
尚德双, 王基庆, 茅惠兵, 杨平雄, 俞建国, 赵强. 电场调控下不对称耦合量子点中激子的发光特性[J]. 发光学报, 2011,32(7): 650-654
SHANG De-shuang, WANG Ji-qing, MAO Hui-bing, YANG Ping-xiong, YU Jian-guo, ZHAO Qiang. Luminescence Properties of Excitons in The Asymmetric Coupled Quantum Dots under Electric Fields[J]. Chinese Journal of Luminescence, 2011,32(7): 650-654
尚德双, 王基庆, 茅惠兵, 杨平雄, 俞建国, 赵强. 电场调控下不对称耦合量子点中激子的发光特性[J]. 发光学报, 2011,32(7): 650-654 DOI: 10.3788/fgxb20113207.0650.
SHANG De-shuang, WANG Ji-qing, MAO Hui-bing, YANG Ping-xiong, YU Jian-guo, ZHAO Qiang. Luminescence Properties of Excitons in The Asymmetric Coupled Quantum Dots under Electric Fields[J]. Chinese Journal of Luminescence, 2011,32(7): 650-654 DOI: 10.3788/fgxb20113207.0650.
使用有效质量模型
从理论上对GaAs/Al
0.35
Ga
0.65
As不对称耦合量子点在不同耦合强度下束缚态和反束缚态的能级分裂情况进行了详细分析
重点探讨了电子和空穴的耦合隧穿对量子点体系能级特征及激子发光强度的影响。研究发现:不对称耦合量子点在外电场作用下价带束缚态和反束缚态能级出现反交现象
反交处的能级分裂值和临界电场随量子点间距的增加而减小;对应的激子发光强度也经历了从亮(暗)到暗(亮)激子的转变。
We theoretically analyzed the bonding and anti-bonding energy states in the GaAs/Al
0.35
Ga
0.65
As asymmetric coupled quantum dots under a series of electric fields. The carrier tunneling effect strongly influences the exciton energy and oscillator strength.We find that energy splitting of anti-crossing occurs under an critical electric field for hole bounding and anti-bonding states
and both the energy gap and the critical field decrease with increasing the barrier distance. Meanwhile
the exciton luminescence intensity changes from bright(dark) to dark(bright) under external fields.
Yuan Z L, Kardynal B E, Stevenson R M, et al. Electrically driven single-photon source [J]. Science, 2002, 295 (5552):102-105.[2] Yin Jiwen, Xiao Jinglin, Yu Yifu, et al. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit [J]. Acta Phys. Sin.(物理学报), 2008, 57 (5):2695-2698 (in Chinese).[3] Loss D, DiVincenzo D P. Quantum computation with quantum dots [J]. Phys. Rev. A, 1998, 57 (1):120-126.[4] Zhang X W, Xia J B. Effects of magnetic field on the electronic structure of wurtzite quantum dots: Calculations using effective-mass envelope function theory [J]. Phys. Rev. B, 2005, 72 (7):075363-1-8.[5] Huang G M, Liu Y M, Bao C G. Symmetry constraints and the electronic structures of a quantum dot with thirteen electrons [J]. Phys. Rev. B, 2003, 68 (16):165334-1-10.[6] Hu Xuebing, Zheng Zhuhong, Gong Weiwei, et al. Photoluminescence of self-assembled CdSe quantum dots with different thickness CdSe quantum well layers [J]. Chin. J. Lumin. (发光学报), 2007, 28 (5):724-728 (in Chinese).[7] Li Shushen, Xia Jianbai. Asymmetric quantum-confined Stark effects of hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots [J]. Appl. Phys., 2005, 87 (4):043102-1-3.[8] Oliver Benson, Charles Santori, Matthew Pelton, et al. Regulated and entangled photons from a single quantum dot [J]. Phys. Rev. Lett., 2000, 84 (11):2513-2516.[9] Doty M F, Scheibner M, Ponomarev I V, et al. Electrically tunable g factors in quantum dot molecular spin states [J]. Phys. Rev. Lett., 2006, 97 (19):197202-1-4.[10] Li Shushen, Xia Jianbai, Yuan Z L, et al. Effective-mass theory for InAs/GaAs strained coupled quantum dots [J]. Phys. Rev. B, 1996, 54 (16):11575-11581.[11] Li Shushen, Xia Jianbai. Intraband optical absorption in semiconductor coupled quantum dots [J]. Phys. Rev. B, 1997, 55 (23):15434-15437.[12] Bayer M, Stern O, Kuther A, et al. Spectroscopic study of dark excitons in InxGa1-xAs self-assembled quantum dots by a magnetic-field-induced symmetry breaking [J]. Phys. Rev. B, 2000, 61 (11):7273-7276.[13] Nakooka T, Saito T, Tatebayashi J, et al. Size, shape, and strain deflendence of the g foctor in self-assembled In(Ga)As quantom dots [J]. Phys. Rev. B, 2004, 70 (23):235337-1-8.[14] Bracker A S, Scheibner M, Doty M F, et al. Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules [J]. Appl. Phys. Lett., 2006, 89 (23):233110-1-3.[15] Scheibner M, Ponomarev I V, Stinaff E A, et al. Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs [J]. Phys. Rev. Lett., 2007, 99 (19):197402-1-4.[16] Trellakis A, Zibold T, Andlauer T, et al. the 3D nanometer device project nextnano:concepts, methods, results [J]. J. Compulational Electronics, 2006, 5 (4):285-289.[17] Gywat Oliver, Krenner Hubert J, Berezovsky Jesse. Spins in Optically Active Quantum Dots [M]. Weinheim: Wiley-VCH, 2010:170.
0
浏览量
164
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构