浏览全部资源
扫码关注微信
1. 中国科学院 研究生院 北京,100049
2. 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室,吉林 长春,130022
收稿日期:2011-04-25,
修回日期:2011-05-15,
网络出版日期:2011-06-22,
纸质出版日期:2011-06-22
移动端阅览
崔乃迪, 梁静秋, 梁中翥, 周建伟, 王维彪. 二氧化硅蛋白石光子晶体中粒子重构对光学性质的影响[J]. 发光学报, 2011,32(6): 542-549
CUI Nai-di, LIANG Jing-qiu, LIANG Zhong-zhu, ZHOU Jian-wei, WANG Wei-biao. Influence of Particle's Deformation on The Optical Properties of Silica Opal Photonic Crystals[J]. Chinese Journal of Luminescence, 2011,32(6): 542-549
崔乃迪, 梁静秋, 梁中翥, 周建伟, 王维彪. 二氧化硅蛋白石光子晶体中粒子重构对光学性质的影响[J]. 发光学报, 2011,32(6): 542-549 DOI: 10.3788/fgxb20113206.0542.
CUI Nai-di, LIANG Jing-qiu, LIANG Zhong-zhu, ZHOU Jian-wei, WANG Wei-biao. Influence of Particle's Deformation on The Optical Properties of Silica Opal Photonic Crystals[J]. Chinese Journal of Luminescence, 2011,32(6): 542-549 DOI: 10.3788/fgxb20113206.0542.
使用自组装法制备了蛋白石结构二氧化硅纳米球三维光子晶体
并对样品在150
300
450 ℃温度下进行了热处理。随热处理温度的升高
光子晶体禁带中心波长出现22.5 nm的蓝移
且禁带宽度变窄。对于在450 ℃热处理的样品
其测量的禁带中心波长为572.5 nm
与理论计算结果有较大差异。引起样品光学特性变化的原因是热处理后二氧化硅球体形变和重构。进一步分析了小球形变对样品光学特性的影响
根据实验结果
修正了计算模型。利用修正后的模型计算样品禁带中心波长为558nm
和实验结果符合良好。
The opal photonic crystals were fabricated with silica colloidal particles. These opal photonic crystal samples were annealed at 150
300
450 ℃ separately. For the photonic crystals annealed at 450 ℃
the central wavelength of photonic band gap(PBG) was measured at 572.5 nm
which was greatly different from the calculated result at 605 nm. In addition
the samples showed a blue shift for 22.5 nm and a reduction of the photonic band gap width upon increasing the annealing temperature. The shrink and deformation of silica colloidal particles were observed by SEM. The influence mechanism of the deformation was analyzed quantitatively
and the theoretical model was amended. The central wavelength of PBG re-calculated with the amended dodecahedron model was 558 nm
which fit the measured result much better than that calculated with the old sphere model. The new dodecahedron model provides a way to analyze the optical properties of the deformed opal PCs in theory
and shall be of significant value on the fabrication and application of photonic crystals devices.
Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett., 1987, 58 (20):2059-2062.[2] John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58 (23):2486-2489.[3] Hu Xiaoyong, Jiang Ping, Ding Chengyuan, et al. Picosecond and low-power all-optical switching based on organic photonic band gap microcavity [J]. Nature Photonics, 2008, 2 (3):185-189.[4] Zhao H W, Zhang X Y, Yuan B, et al. Research on some new mechanisms of slow light and its applications [J]. Optics and Precesion Enginerring (光学 精密工程), 2009, 17 (2):237-245 (in Chinese).[5] Dowling J P, Scalora M, Bloemer M J, et al. The photonic band edge laser:A new approach to gain enhancement [J]. J. Appl. Phys., 1994, 75 (4):1896-1899.[6] Shih M H, Kim W J, Kuang W, et al. Experimental characterization of the reflectance of 60waveguide bend in photonic crystal waveguide [J]. Appl. Phys. Lett., 2005, 86 (19):191104-1-3.[7] Brown E R, Parker C D. Yabnolovitch E. Radiation properties of a planar antenna on photonic crystal substrate [J]. J. Opt. Soc. Am. B, 1993, 10 (2):404-407.[8] Wang C C, Chen L W. Tunable two-dimensional photonic crystal couplers made of dielectric elastomer inclusions [J]. Appl. Opt., 2010, 49 (18):3452-3457.[9] Qiu M, Jaskorzynska B. Design of a channel drop filter in a two-dimensional triangular photonic crystal [J]. Appl. Phys. Lett., 2003, 83 (10):10764-1-3.[10] Tada T, Poborchii V V, Kanayama T. Channel waveguides fabricated in 2D photonic crystals of Si nanopillars [J]. Microelectron. Eng., 2002, 63 (1):259-265.[11] Charlton M D B, Zoorob M E, Parker G J, et al. Experimental investigation of photonic crystal waveguide devices and line-defect waveguide bends [J]. Mat. Sci. Eng. B, 2000, 74 (1):17-24.[12] Han S Z, Tian J, Feng S, et al. Fabrication of straight waveguide in two-dimensional photonic crystal slab and its light propagation characteristics [J]. Acta Phys. Sin. (物理学报), 2005, 54 (12):5659-5662 (in Chinese).[13] Wang J C, Rong W B, Li X X, et al. Fabrication process analysis fro nano-positioning stage based on silicon bulk micromachining [J]. Optics and Precesion Enginerring (光学 精密工程), 2008, 16 (4):636-641.[14] McPhail D. Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing [J]. Appl. Phys. Lett., 2005, 87 (9):091117-1-3.[15] Miklyaev Y V, Meisei D C, Blanco A, et al. Three-dimensional face-centered-cubic photonic crystal templates by laser holography:fabrication, optical characterization, and band-structure calculations [J]. Appl. Phys. Lett., 2003, 82 (8):1284-1286.[16] Jiang P, Bertone J F, Shuang K, et al. Single-crystal colloidal multilayers of controlled thickness [J]. Chem Mater., 1999, 11 (8):2132-2140.[17] Chang Y C, Wu H W, Chen H L, et al. Two-dimensional inverse opal ZnO nanorod networks with photonic band gap [J]. J. Phys. Chem. C, 2009, 113 (33):14778-14782.[18] Wang W, Gu B H, Liang L Y, et al. Fabrication of two- and three-dimensional silica nanocolloidal particle arrays [J]. J. Phys. Chem. B, 2003, 107 (15):3400-3404.[19] Wang W, Gu B H, Liang L Y, et al. Fabrication of two- and three-dimensional silica nanocolloidal particle arrays [J]. J. Phys. Chem. B, 2003, 107 (15):3400-3404.[20] Rugge A, Park J S, Gordon R G. et al. Tantalum(V) nitride inverse opals as photonic structures for visible wavelengths [J]. J. Phys. Chem. B, 2005, 109 (9):3764-3771.[21] Zhou Z C, Zhao X S. Flow-controlled vertical deposition method for the fabrication of photonic crystals [J]. Langumir, 2004, 20 (4):1524-1526.[22] Ye Y H, LeBlanc F, Hahc A, et al. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality [J]. Appl. Phys. Lett., 2001, 78 (1):52-54.[23] Holgado M, Garcia-Santamaria F, Blanco A, et al. Electrophoretic deposition to control artificial opal growth [J]. Langmuir, 1999, 15 (14):4701-4704.[24] Pozaas R, Mihi A, Ocana M, et al. Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating [J]. Adv. Mater., 2006, 18 (9):1183-1187.[25] Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip material assembly of silicon photonic bandgap crystals [J]. Nature, 2001, 414 (6861):289-293.[26] Yan Q F, Nukala P, Chiang Y, et al. Three-dimensional metallic opals fabricated by double templating [J]. Thin Solid Films, 2009, 517 (17):5166-5171.[27] Zheng Z Y, Gao K Y, Luo Y H, et al. Rapidly infrared-assisted cooperatively self-assembled highly ordered multiscale porous materials [J]. J. Am. Chem. Soc., 2008, 130 (30):9785-9789.[28] Sun Z Q, Chen X, Zhang J H, et al. Nonspherical colloidal crystals fabricated by the thermal pressing of colloidal crystal chips [J]. Langmuir, 2005, 21 (20):8987-8991.[29] Li J, Xue L J, Wang Z. et al. Colloidal photonic crystals with a graded lattice-constant distribution [J]. Colloid Polym. Sci., 2007, 285 (9):1037-1041.[30] Sinitskii A S, Knot'ko A V, Tretyakov Y D. Silica photonic crystals:synthesis and optical properties [J]. Solid State Ionics, 2004, 172 (1-4):477-479.[31] Deubel M, Freymann G V, Wegener M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J]. Nature Mater, 2004, 3 (7):444-447.
0
浏览量
1112
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构