浏览全部资源
扫码关注微信
1. 蚌埠学院 应用化学与环境工程系,安徽 蚌埠,233000
2. 安徽大学化学化工学院 先进多孔材料实验室,安徽 合肥,230039
收稿日期:2010-11-12,
修回日期:2011-02-26,
网络出版日期:2011-05-22,
纸质出版日期:2011-05-22
移动端阅览
李宗群, 张敏, 薛文, 裘灵光. 金属-有机骨架[Zn(BDC)(H<sub>2</sub>O)<sub>2</sub>]<sub><em>n</em></sub>膜的原位制备及其对硝基苯类有机物的可逆检测[J]. 发光学报, 2011,32(5): 514-518
LI Zong-qun, ZHANG Min, XUE Wen, QIU Ling-guang. In-situ Preparation of Metal-organic Framework [Zn(BDC)(H<sub>2</sub>O)<sub>2</sub>]<sub><em>n</em></sub>,,Films and Reversible Detection of Nitrobenzenes[J]. Chinese Journal of Luminescence, 2011,32(5): 514-518
李宗群, 张敏, 薛文, 裘灵光. 金属-有机骨架[Zn(BDC)(H<sub>2</sub>O)<sub>2</sub>]<sub><em>n</em></sub>膜的原位制备及其对硝基苯类有机物的可逆检测[J]. 发光学报, 2011,32(5): 514-518 DOI: 10.3788/fgxb20113205.0514.
LI Zong-qun, ZHANG Min, XUE Wen, QIU Ling-guang. In-situ Preparation of Metal-organic Framework [Zn(BDC)(H<sub>2</sub>O)<sub>2</sub>]<sub><em>n</em></sub>,,Films and Reversible Detection of Nitrobenzenes[J]. Chinese Journal of Luminescence, 2011,32(5): 514-518 DOI: 10.3788/fgxb20113205.0514.
采用水热法
将锌片与对苯二甲酸(H
2
BDC)反应原位合成[Zn(BDC)(H
2
O)
2
]
n
薄膜。利用XRD和SEM分别对薄膜的结构、形貌和尺寸等进行了表征。结果表明
薄膜是由一维链状结构的金属-有机骨架材料纳米晶构成的
随着水热时间的增加
薄膜中的[Zn(BDC)(H
2
O)
2
]
n
纳米晶晶粒尺寸逐渐减小。该薄膜在紫外光的激发下可发出较强的荧光
硝基化合物会对薄膜的荧光产生强烈的猝灭作用
响应速率快并具有可逆性。硝基化合物的体积在0.25~2%之间时
猝灭效率呈线性关系
表明薄膜对硝基苯类有机污染物具有高效、高灵敏度的传感性能。
[Zn(BDC)(H
2
O)]
n
metal-organic framework films have been synthesized on the surface of zinc substrate by a hydrothermal reaction between zinc slice and 1
4-benzenedicarboxylic acid (H
2
BDC) at 140 ℃ for different reaction times. The films were characterized and analyzed with X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the films were constructed from nano- or microcrystals of [Zn(BDC)(H
2
O)
2
]
n
a one-dimensional zig-zag type MOF. With increasing the hydrothermal reaction time
the particle sizes reduced gradually and then the nanoscaled crystals of [Zn(BDC)-(H
2
O)
2
]
n
films were obtained after 12 h. The formation mechanism of the films on the zinc substrate was preliminarily discussed. All samples of the films exhibited strong solid state fluorescence at room temperature with an emission maximum at 395 nm under excitation of 332 nm. Strong fluorescence quenching of the films was observed due to energy transfer between nitrobenzene quenchers and the MOFs chains through the electrostatic interaction. Fluorescence quenching efficiency increased linearly with the concentration of nitrobenzene in 0.25~2%
which indicate this film has a high efficiency
fast response
and reversible for nitrobenzene.
Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material n [J]. Science, 1999, 283 (5405):1148-1150.[2] Li H L, Eddaoudi M, OKeeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402 (6759):276-279.[3] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295 (5554):469-472.[4] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science, 2003, 300 (5622):1127-1129.[5] Surbl S, Millange F, Serre C, et al. Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis [J]. J. Am. Chem. Soc., 2006, 128 (46):14889-14896.[6] Wang X Y, Wang L, Wang Z M, et al. Solvent-tuned azido-bridged Co2+ layers: square, honeycomb, and kagom [J]. J. Am. Chem. Soc., 2006, 128 (3):674-675.[7] Wu C D, Hu A G, Zhang L, et al. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis [J]. J. Am. Chem. Soc., 2005, 127 (25):8940-8941.[8] Chen B L, Yang Y, Zapata F, et al. Luminescent open metal sites within a metal-organic framework for sensing small molecules [J]. Adv. Mater., 2007, 19 (13):1693-1696.[9] Qiu L G, Li Z Q, Wu Y, et al. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines [J]. Chem. Commun., 2008(31):3642-3644.[10] Zhou Ming, Feng Chengcheng, Wu Chunxia, et al. Preparation and growth mechanism of well-aligned ZnO nanonails synthesized by chemical vapor deposition [J]. Chin. J. Lumin. (发光学报), 2009, 30 (5):717-721 (in Chinese).[11] Wang Mahua, Zhu Guangping, Xu Chunxiang. Investigation on fabrication and photoluminescence property of an individual ZnO hexagonal microneedle [J]. Chin. J. Lumin. (发光学报), 2010, 31 (1):105-108 (in Chinese).[12] Jiang Xiaofang, Li Xiaolong, Cao Junfeng, et al. Stimulated emission property of novel ZnO nanoneedle pumped by two-photon [J]. Chin. J. Lumin. (发光学报), 2010, 31 (1):109-113 (in Chinese).[13] Liu Wenjun, Cai Shaomin, Xie Hongsi, et al. Orientation controlling growth of electrodeposited ZnO films on cathode [J]. Chin. J. Lumin. (发光学报), 2010, 31 (2):214-218 (in Chinese).[14] Dyers M. Trans:Wu Dacheng, et al. Surfaces, Inerface, and Colloids: Principles and Applications [M]. 2nd Edition, Beijing: Chemical Industry Press, 2004:100-101.[15] Edgar M, Mitchell R, Slain A M Z, et al. Solid-state transformations of zinc 1,4-benzenedicarboxylates mediated by hydrogen-bond-forming molecules [J]. Chem. Eur. J., 2001, 7 (23):5168-5175.[16] Li Z Q, Qiu L G, Wang W, et al. Fabrication of nanosheets of a fluorescent metal-organic framework n(BDC=1,4-benzenedicarboxylate): ultrasonic synthesis and sensing of ethylamine [J]. Inorg. Chem. Commun., 2008, 11 (11):1375-1377.[17] Lan A J, Li K H, Wu H H, et al. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives [J]. Angew. Chem. Int. Ed., 2009, 48 (13):2334-2338.[18] Zhang Peiquan, Zeng Heping. Synthesis and fluorescence properties of 2-methyl-2,5'-(ethylene)-bis-8-hydroxyquinoline and its zinc complexes [J]. Chin. J. Inorg. Chem. (无机化学学报), 2008, 24 (1):124-129 (in Chinese).[19] Fang Qing, Zeng Heping, Zhang Weimin, et al. Synthesis and fluorescence of bis{2-{2-{9-ethyl-6- carbazol-3-yl}vinyl}-8-quinolinolato}Zn complex [J]. Chin. J. Org. Chem. (有机化学), 2008, 28 (5):814-818 (in Chinese).[20] Wu Shikang. Introduction to Supramolecular Photochemistry [M]. Beijing: Science Press, 2005:46-47 (in Chinese).[21] Xu Jingou, Wang Zunben. Fluorescence Analytical Methods [M]. 3rd Edition, Beijing: Science Press, 2006:72-75 (in Chinese).[22] Huang G, Yang C, Xu Z T, et al. Shape-selective sorption and fluorescence sensing of aromatics in a flexible network of tetrakis silane and AgBF4 [J]. Chem. Mater., 2009, 21 (3):541-546.
0
浏览量
39
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构