ZHANG An-bang, MA Xiang-yang, JIN Lu, YANG De-ren. Electroluminescence of Heterostructures Formed by p<sup>+</sup>-Si and TiO<sub>2</sub> Films Derived from Oxidation of Sputtered Ti Films[J]. Chinese Journal of Luminescence, 2011,32(5): 471-475
ZHANG An-bang, MA Xiang-yang, JIN Lu, YANG De-ren. Electroluminescence of Heterostructures Formed by p<sup>+</sup>-Si and TiO<sub>2</sub> Films Derived from Oxidation of Sputtered Ti Films[J]. Chinese Journal of Luminescence, 2011,32(5): 471-475 DOI: 10.3788/fgxb20113205.0471.
-Si heterostructures were formed by thermal oxidation of the sputtered Ti films on heavily boron-doped silicon (p
+
-Si) substrates. In order to make the TiO
2
/p
+
-Si heterostructures more suitable for electroluminescence
the TiO
2
films should be anastate in crystal structure. This required the precursor Ti films possess small crystal grains. Such Ti films could be sputtered at relatively low sputtering power. Moreover
the thickness of TiO
2
films should be controlled in a desirable range. The related mechanisms for the above-mentioned results have been discussed.
关键词
Keywords
references
Chen Hua. Calculation of optical properties in anatase TiO2 [J]. Chin. J. Lumin. (发光学报), 2009, 30 (5):697-701(in Chinese).[2] Yu Haihu, Yu Dingshan, Zhou Lingde, et al. Structural phase transition and photoluminescence of TiO2 nano-crystals [J]. Chin. J. Lumin.(发光学报), 2006, 27 (2):239-242 (in Chinese).[3] Weinberger B R, Garber R B. Titanium dioxide photocatalysts produced by reactive magnetron sputtering [J]. Appl. Phys. Lett., 1995, 66 (18):2409-2411.[4] Krishna M G, Rao K N, Mohan S. Properties of ion assisted deposited titania films [J]. J. Appl. Phys., 1993, 73 (1): 434-438.[5] Zeman P, Takabayashi S. Self-cleaning and antifogging effects of TiO2 films prepared by radio frequency magnetron sputtering [J]. J. Vac. Sci. Technol. A, 2002, 20 (2):388-393.[6] Tang H, Prasad K, Sanjines R, et al. TiO2 anatase thin films as gas sensors [J]. Sens. Actuators B, 1995, 26 (1):71-75.[7] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95 (1):69-96.[8] Munnix S, Schmeits M. Origin of defect states on the surface of TiO2 [J]. Phys. Rev. B, 1985, 31 (6):3369-3371.[9] Plugaru R, Cremades A, Piqueras J. The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2 [J]. J. Phys.: Condens. Matter, 2004, 16 (2):s261-s268.[10] Cronemeyer D C. Infrared absorption of reduced rutile TiO2 single crystals [J]. Phys. Rev., 1959, 113 (5):1222-1226.[11] Knenkamp R, Word R C, Godinez M. Electroluminescence in nanoporous TiO2 solid-state heterojunctions [J]. Nanotechnology, 2006, 17 (8):1858-1861.[12] Nakato Y, Tsumura A, Tsubomura H. Photo- and electroluminescence spectra from an n-TiO2 semiconductor electrode as related to the intermediates of the photooxidation reaction of water [J]. J. Phys. Chem., 1983, 87 (13):2402-2405.[13] Zhang Y Y, Ma X Y, Chen P L, et al. Electroluminescence from TiO2/p+-Si heterostructure [J]. Appl. Phys. Lett., 2009, 94 (6):061115-1-3.[14] Zhang Y Y, Ma X Y, Chen P L, et al. Crystallization behaviors of TiO2 films derived from thermal oxidation of evaporated and sputtered titanium films [J]. J. Alloys Compd., 2009, 480 (2):938-941.