浏览全部资源
扫码关注微信
长春理工大学 化学与环境工程学院,吉林 长春,130022
收稿日期:2010-11-07,
修回日期:2010-12-13,
网络出版日期:2011-05-22,
纸质出版日期:2011-05-22
移动端阅览
刘桂霞, 李若兰, 董相廷, 王进贤. LaPO<sub>4</sub> ∶ Eu<sup>3+</sup>@SiO<sub>2</sub> 核壳结构发光纳米棒的制备与表征[J]. 发光学报, 2011,32(5): 466-470
LIU Gui-xia, LI Ruo-lan, DONG Xiang-ting, WANG Jin-xian. Preparation and Characterization of LaPO<sub>4</sub> ∶ Eu<sup>3+</sup>@SiO<sub>2</sub> Core-shell Luminescent Naonrods[J]. Chinese Journal of Luminescence, 2011,32(5): 466-470
刘桂霞, 李若兰, 董相廷, 王进贤. LaPO<sub>4</sub> ∶ Eu<sup>3+</sup>@SiO<sub>2</sub> 核壳结构发光纳米棒的制备与表征[J]. 发光学报, 2011,32(5): 466-470 DOI: 10.3788/fgxb20113205.0466.
LIU Gui-xia, LI Ruo-lan, DONG Xiang-ting, WANG Jin-xian. Preparation and Characterization of LaPO<sub>4</sub> ∶ Eu<sup>3+</sup>@SiO<sub>2</sub> Core-shell Luminescent Naonrods[J]. Chinese Journal of Luminescence, 2011,32(5): 466-470 DOI: 10.3788/fgxb20113205.0466.
在不加任何表面活性剂的条件下
通过水热法直接合成了LaPO
4
∶ Eu
3+
纳米棒
并采用溶胶-凝胶法在其表面修饰了一层SiO
2
得到了LaPO
4
∶ Eu
3+
@SiO
2
纳米棒。XRD分析表明
样品包覆前后均属于单斜晶系的独居石型的LaPO
4
。FTIR分析表明
LaPO
4
∶ Eu
3+
粒子与SiO
2
是以化学键的形式结合在一起。由TEM照片可见
所得LaPO
4
∶ Eu
3+
样品为直径约20 nm、长度达300~500 nm的长径比较大的纳米棒。通过改变TEOS的加入量得到了不同包覆层厚度的LaPO
4
∶ Eu
3+
@SiO
2
纳米棒。荧光光谱分析表明:以259 nm作为激发波长
LaPO
4
∶ Eu
3+
发光纳米棒的主发射峰位于591 nm
为Eu
3+
的特征橙红光发射
归属于Eu
3+
的
5
D
0
7
F
1
跃迁。随着SiO
2
包覆层厚度的增加
样品的激发光谱和发射光谱的强度逐渐减弱
峰形和谱峰的位置没有明显的变化。
LaPO
4
∶ Eu
3+
luminescence nanorods were prepared via a hydrothermal method without any surfactants
then an uniform SiO
2
layer was coated on the surface of LaPO
4
∶ Eu
3+
nanorods by sol-gel method. At lasts LaPO
4
∶ Eu
3+
@SiO
2
core-shell structural luminescence nanorods were achieved. XRD patterns show that the uncoated and coated samples are all monclinic LaPO
4
crystals. FTIR spectra indicate that LaPO
4
∶ Eu
3+
is linked with SiO
2
by chemical bond. TEM images reveal that the LaPO
4
∶ Eu
3+
samples are one-dimensional nanorods with a diameter of 20 nm and a length of 300~500 nm. The coating thickness of SiO
2
can be controlled by the concentration of TEOS. The results of photoluminescence properties show that the main emission peak of LaPO
4
∶ Eu
3+
nanorods is near 591 nm
which is the characteristic orange red light corresponding to
5
D
0
7
F
1
transition of Eu
3+
under 259 nm excitation. The PL intensity of the samples become weak with the increasing of the coating thickness
but the shape and the position of the peaks are not changed.
Blasse G, Grabmeter B C. Luminescent Materials [M]. Berlin: Springer-Verlag, 1994:40-45.[2] Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4 ∶ Ln (Ln=Eu, Sm, Dy) [J]. J. Phys. Chem. B, 1998, 102 (50):10129-10135.[3] Riwotzki K, Haase M. Colloidal YVO4 ∶ Eu and YP0.95V0.05O4 ∶ Eu nanoparticles: Luminescence and energy transfer proce-sses [J]. J. Phys. Chem. B, 2001, 105 (51):12709-12713.[4] Zhang X, Liao J Y, Yin Z W, et al. Improving radiation stability of yttrium ions doped PbWO4 crystals by stoichiometric tuning [J]. Chem. Phys. Lett., 2004, 383 (3-4):245-250.[5] Sohn K S, Zeon W, Chang H, et al. Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4(R=As,Nb,P,V) system [J]. Chem. Mater., 2002, 14 (5):2140-2148.[6] Rambabu U, Amalnerkar D P, Kale B B, et al. Optical properties of LnPO4 ∶ Tb3+(Ln=Y,La and Gd) powder phosphors [J]. Mater. Chem. Phys., 2001, 70 (1):1-6.[7] Yu L X, Li D C, Yue M X, et al. Dependence of morphology and photoluminescent properties of GdPO4 ∶ Eu3+ nanostructures on synthesis condition [J]. Chem. Phys., 2006, 326 (2-3):478-482.[8] Yan B, Su X Q, Zhou K. In situ chemical coprecipatation composition of hybrid precursors to red YVO4 ∶ Eu3+ and green LaPO4 ∶ Tb3+ phosphors [J]. Materials Research Bulletin, 2006, 41 (1):134-143.[9] Di W H, Wang X J, Chen B J. Preparation, characterization and VUV luminescence property of YPO4 ∶ Tb phosphor for a PDP [J]. Optical Materials, 2005, 27 (8):1386-1390.[10] Yang M, You H P, Zheng Y H, et al. Hydrothermal synthesis and luminescent properties of novel ordered sphere CePO4 hierarchical architectures [J]. Inorg. Chem., 2009, 48 (24):11559-11565.[11] Zhang L H, Jia G, You H P, et al. Sacrificial template method for fabrication of submicrometer-size YPO4 ∶ Eu3+ hierarchical hollow spheres[J]. Inorg. Chem., 2010, 49 (7):3305-3309.[12] Bloemer M J, Haus J W. Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film [J]. Appl. Phys. Lett., 1992, 61 (1):1619-1621.[13] Boxberg F, Sndergaard N, Xu H Q. Photovoltaics with piezoelectric core-shell nanowires [J]. Nano Lett., 2010, 10 (4):1108-1112.[14] Chi F L, Guo Y N, Liu J, et al. Size-tunable and functional core-shell structured silica nanoparticles for drug release [J]. J. Phys. Chem. C, 2010, 114 (6):2519-2523.[15] Chiu W, Khiew P, Cloke M, et al. Heterogeneous seeded growth: Synthesis and characterization of bifunctional Fe3O4/ZnO core/shell nanocrystals [J]. J. Phys. Chem. C, 2010, 114 (18):8212-8218.[16] Darbandi M, Nann T. One-pot synthesis of YF3@silica core/shell nanoparticles [J]. Chem. Commun., 2006(7):776-778.[17] Aoki K, Chen J Y, Yang N J, et al. Charge-transfer reactions of silver stearate-coated nanoparticles in suspensions [J]. Langmuir, 2003, 19 (23):9904-9909.[18] Zhou J, Chen M, Qiao X G, et al. Facile preparation method of SiO2/PS/TiO2 multilayer core-shell hybrid microspheres [J]. Langmuir, 2006, 22 (24):10175-10179.[19] Lin C K, Kong D Y, Liu X M, et al. Monodisperse and core-shell-structured SiO2@YBO3 ∶ Eu3+ spherical particles: Synthesis and characte-rization [J]. Inorg. Chem., 2007, 46 (7):2674-2681.[20] Lin C K, Zhao B, Wang Z L, et al. Spherical SiO2@GdPO4 ∶ Eu3+ core-shell phosphors:Sol-gel synthesis and characte-rization [J]. J. Nanosci. Nanotech., 2007, 7 (2):542-548.[21] Zhu L, Meng J, Cao X Q. Synthesis and photoluminescent properties of silica-coated LaCeF3 ∶ Tb nanocrystals [J]. J. Nanopart. Res., 2008, 10 (2):383-386.[22] Wang Q, He L P, Dai N, et al. Eu3+-doped LaPO4 and LaAlO3 nanosystems and their luminescence properties [J]. Science China, Series B: Chemistry (中国科学B辑:化学), 2009, 52 (8):1104-1112 (in Chinese).
0
浏览量
33
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构