浏览全部资源
扫码关注微信
1. 重庆大学 材料科学与工程学院 重庆,400044
2. 重庆理工大学 化学化工学院, 重庆 400054
收稿日期:2010-10-09,
修回日期:2010-11-24,
网络出版日期:2011-05-22,
纸质出版日期:2011-05-22
移动端阅览
徐幸梓, 王必本, 陈玉安. 水热合成ZnTe纳米粉的发光性能[J]. 发光学报, 2011,32(5): 428-432
XU Xing-zi, WANG Bi-ben, CHEN Yu-an. Photoluminescence Properties of ZnTe Nanopowder Synthesized by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2011,32(5): 428-432
徐幸梓, 王必本, 陈玉安. 水热合成ZnTe纳米粉的发光性能[J]. 发光学报, 2011,32(5): 428-432 DOI: 10.3788/fgxb20113205.0428.
XU Xing-zi, WANG Bi-ben, CHEN Yu-an. Photoluminescence Properties of ZnTe Nanopowder Synthesized by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2011,32(5): 428-432 DOI: 10.3788/fgxb20113205.0428.
利用Zn粉和Te粉为原材料
通过水热法在160 ℃下合成了ZnTe纳米粉
并用X射线衍射仪、X射线能谱仪、透射电子显微镜和显微Raman光谱对其进行了表征。X射线衍射谱表明合成的ZnTe具有闪锌矿结构。X射线能谱给出的结果表明合成的ZnTe中主要元素是Zn和Te
并含有杂质O。透射电子显微镜照片显示出合成的ZnTe纳米粉颗粒不均匀
其大小为8~160 nm
并且小颗粒ZnTe发生了聚集。Raman谱在206
411
615 cm
-1
处显示出ZnTe的3个纵向光学声子振动模式。在室温下对ZnTe纳米粉的发光性能进行了研究
其荧光谱在535.6 nm处显示出弱的施主-受主对的复合发光
在581
699 nm处分别显示出与Zn空位-杂质缺陷联合体和等电中心氧俘获有关的强发光峰。利用有关理论解释了室温下施主-受主对的复合辐射。
ZnTe nanopowder was synthesized at 160 ℃ by hydrothermal method
in which the zinc and tellurium powders were used as the precursors. The powder was characterized by X-ray diffraction
X-ray energy dispersive spectroscopy
transmission electron microscopy and micro-Raman spectroscopy. The X-ray diffraction pattern indicates that the synthesized ZnTe particles are zinc blend structure. The X-ray energy dispersive spectrum exhibits that the main elements in the ZnTe nanopowder are zinc and tellurium and the impurity is oxygen. The image of transmission electron microscopy shows that the particles in the powder are diversified in size ranging from about 8 to 160 nm and the small particles aggregate easily. Raman spectrum shows there are three longitudinal optical phonon vibration modes of ZnTe centered at about 206
411
615 cm
-1
. The photoluminescence of ZnTe nanopowders was investigated at room temperature. The photoluminescence spectrum shows the weak recombination emission of donor-acceptor pairs presented at about 535.6 nm and the strong emission bands related to the complex defects containing Zn vacancies and impurity as well as isoelectronic oxygen trap at about 581
699 nm
respectively. The recombination emission of donor-acceptor pairs at room temperature is reasonably explained by the related theory.
Shaaban E R, Kansal I, Mohamed S H, et al. Microstructural parameters and optical constants of ZnTe thin films with various thicknesses [J]. Physica B, 2009, 404 (20):3571-3576.[2] Wan B, Hu C, Feng B, et al. Optical properties of ZnTe nanorods synthesized via a facile low-temperature solvothermal route [J]. Mater. Sci. Eng. B, 2010, 171 (1-3):11-15.[3] Christian P, Liu E. Low temperature synthesis of metal chalcogenide nanoparticles in mesitylene [J]. Polyhedron, 2010, 29 (2):691-696.[4] Suriwong T, Thongtem S, Thongtem T. Solid-state synthesis of cubic ZnTe nanocrystals using a microwave plasma [J]. Mater. Lett., 2009, 63 (24-25):2103-2106.[5] Gandhi T, Raja K S, Misra M. Synthesis of ZnTe nanowires onto TiO2 nanotubular arrays by pulse-reverse electrodeposition [J]. Thin Solid Films, 2009, 517 (16):4527-4533.[6] Bacaksiz E, Aksu S, Ozer N, et al. The influence of substrate temperature on the morphology, optical and electrical pro-perties of thermal-evaporated ZnTe thin films [J]. Appl. Sur. Sci., 2009, 256 (5):1566-1572.[7] Shi Erwei, Chen Zhizhan, Yuan Rulin, et al. Hydrothermal Crystallography [M]. Beijing: Science Press, 2004:36 (in Chinese).[8] Mayers B, Xia Y. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach [J]. J. Mater. Chem., 2002, 12 (6):1875-1881.[9] Wang B B, Xu X Z. Study on effects of time and temperature on growth of nanocrystalline zinc selenide synthesized by hydrothermal method [J]. J. Crystal Growth, 2009, 311 (23-24):4759-4762.[10] Meng Q, Jiang C, Mao S X. Temperature-dependent growth of zinc-blende-structured ZnTe nanostructures [J]. J. Crystal Growth, 2008, 310 (20):4481-4486.[11] Szuszkiewicz W, Morhange J F, Dynowska E, et al. Raman scattering studies of MBE-grown ZnTe nanowires [J]. Materials Science-Poland, 2008, 2 6(4):1053-1059.[12] Sato K, Hanafusa M, Noda A, et al. ZnTe pure green light-emitting diodes fabricated by thermal diffusion [J]. J. Crystal Growth, 2000, 214/215 :1080-1084.[13] Garcia J A, Remn V, Muoz A, et al. Photoluminescence study of radiative transitions in ZnTe bulk crystals [J]. J. Crystal Growth, 1998, 191 (4):685-691.[14] Tanaka T, Hayashida K, Nishio M, et al. Photoluminescence of Cl-doped ZnTe epitaxial layer grown by atmospheric pressure metalorganic vapor phase epitaxy [J]. J. Appl. Phys., 2003, 94 (3):1527-1530.[15] Tews H, Schneider M, Legros R. Laser-induced donor diffusion in ZnTe [J]. J. Appl. Phys., 1983, 54 (2):677-682.[16] Kononenko V K. Injection electroluminescence of zinc telluride [J]. J. Appl. Spectroscopy, 1975, 23 (3):1269-1289.[17] Morozova N K, Karetenikov I A, Blinov V V, et al. Cathodoluminescence spectra of Cd1-xZnxTe solid solution [J]. J. Appl. Spectroscopy, 2000, 67 (1):127-133.[18] Merz J L. Isoelectronic oxygen trap in ZnTe [J]. Phys. Rev., 1968, 176 (3):961-968.[19] Kang Z T, Menkara H, Wanger B K, et al. Oxygen-doped ZnTe phosphors for synchrotron X-ray imaging detectors [J]. J. Electron. Mater., 2006, 35 (6):1262-1266.[20] Saito K, Yamaguchi K, Tanaka T, et al. Post-annealing effect upon electrical and optical properties of MOVPE grown P-doped ZnTe homoepitaxial layers [J]. J. Mater. Sci.: Mater. Electron., 2009, 20 (Supp.1):S264-S267.[21] Xu Xurong, Su Mianzeng. Luminescence and Luminous Materials [M]. Beijing: Chemistry Industry Press, 2004:127,547 (in Chinese).[22] Sun C Q. Size dependence of nanostructures:Impact of bond order deficiency [J]. Progress in Solid State Chemistry, 2007, 35 (1):1-159.[23] Yu Y, Nam S, Lee K, et al. Photoluminescence characteristics of ZnTe epilayers [J]. J. Appl. Phys., 2001, 90 (2):807-812.[24] Chang J H, Takai T, Koo B H, et al. Aluminum-doped n-type ZnTe layers grown by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2001, 79 (6):785-787.[25] Yang Xugang, Wu Qilin. Raman Spectrocopy and Application [M]. Beijing: National Defence Inudtry Press, 2008:5 (in Chinese).
0
浏览量
132
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构