浏览全部资源
扫码关注微信
1. 山东师范大学 化学化工与材料科学学院,山东 济南,250014
2. 滨州医学院(烟台校区), 山东 烟台 264003
收稿日期:2010-10-27,
修回日期:2010-12-03,
网络出版日期:2011-04-22,
纸质出版日期:2011-04-22
移动端阅览
张怀斌, 李怀祥, 王晓艳, 刘文波. 纳米银对表面吸附核黄素分子光谱性质的影响[J]. 发光学报, 2011,32(4): 393-397
ZHANG Huai-bin, LI Huai-xiang, WANG Xiao-yan, LIU Wen-bo. Effects of Silver Nanoparticles on Spectroscopy Properties of Riboflavin Adsorbed on The Surface[J]. Chinese Journal of Luminescence, 2011,32(4): 393-397
张怀斌, 李怀祥, 王晓艳, 刘文波. 纳米银对表面吸附核黄素分子光谱性质的影响[J]. 发光学报, 2011,32(4): 393-397 DOI: 10.3788/fgxb20113204.0393.
ZHANG Huai-bin, LI Huai-xiang, WANG Xiao-yan, LIU Wen-bo. Effects of Silver Nanoparticles on Spectroscopy Properties of Riboflavin Adsorbed on The Surface[J]. Chinese Journal of Luminescence, 2011,32(4): 393-397 DOI: 10.3788/fgxb20113204.0393.
采用氧化还原法制备了纳米尺寸的银溶胶
研究了纳米银粒子对核黄素(Riboflavin
Ri)水溶液吸收光谱和荧光光谱的影响。Ri溶液中加入纳米银粒子
随着纳米银浓度的增大
吸收强度不断增强
372 nm处吸收峰红移
而444 nm处吸收峰蓝移
同时发生荧光猝灭现象。从无辐射通道增强、纳米银表面局域场减弱及Ri分子第一激发单重态(S
1
)布居减少、能量转移等方面初步探讨了荧光猝灭的原因。
The silver nanoparticles have been prepared by oxidation and reduction method and their effects on the optical behaviors of riboflavin aqueous solution have been investigated. The absorption intensity of riboflavin was enhanced. After the silver nanoparticles added into the solution
the 372 nm peak was red-shifted and the 444 nm peak was blue-shifted. The fluorescence of riboflavin solution was quenched with the increase of silver nanoparticles concentration. The mechanism of the quenching of riboflavin aqueous solution has been discussed from the enhancement of non-radiative channel
reduction of local field near the surface of silver nano-particles
distribution reduction of riboflavin molecules in the first single excited stated and energy transfer
etc.
Zhou Y, Yu S H, Wang C Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites [J]. Adv. Mater., 1999, 11 (10):850-852.[2] Haes A J, Chang L, Kleing W L, et al. Detection of a biomarker for alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor [J]. J. Am. Chem. Soc., 2005, 127 (7):2264-2271.[3] Stefan A M, Pieter G K, Harry A A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides [J]. Nature Materials, 2003, 2 (4):229-232.[4] Xu Liangmin, Zhang Zhengrong, Cai Xiaoyan, et al. Physical mechanisms of fluorescence enhancement at metal surface [J]. Chin. J. Lumin.(发光学报), 2009, 30 (3):373-378 (in Chinese).[5] Nabika H, Deki S. Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase [J]. J. Phys. Chem. B, 2003, 107 (35):9161-9164.[6] Lakowicz J R. Radiative decay engineering: biophysical and biomedical applications [J]. Anal. Biochem., 2001, 333 (298):1-24.[7] Geddes C D, Lakowicz J R. Metal-enhanced fluorescence [J]. J. Fluorescence, 2002, 12 (2):121-129.[8] Aslan K, Malyn S N, Geddes C D. Multicolor microwave-triggered metal-enhanced chemiluminescence [J]. J. Am. Chem. Soc., 2006, 128 (41):13372-13373.[9] Zhang J, Lakowicz J R. Enhanced luminescence of phenyl-phenanthridine dye on aggregated small silver nanoparticles [J]. J. Phys. Chem. B, 2005, 109 (18):8701-8706.[10] Ray K, Badugu R, Lakowicz J R. Distance-dependent metal-enhanced fluorescence fromlangmuir-blodgett monolayers of alkyl-NBD derivatives on silver island films [J]. Langumuir, 2006, 22 (20):8374-8378.[11] Lakowicz J R, Kusba J, Shen Y B, et al. Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA [J]. J. Fluorescence, 2003, 13 (1):69-77.[12] Wang Yuehui, Zhou Ji, Wang Ting. Effects of silver nanoparticles on fluorescent properties of fluorescein [J] . Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2007, 27 (8):1555-1559 (in Chinese).[13] Wang Yuehui, Zhu Yishui, Zhu Shuoxuan. Effect of silver nanoparticles on spectroscopy properties of methyl orange [J]. Chin. J. Inorganic Chemsitry (无机化学学报), 2010, 26 (8):1415-1420 (in Chinese).[14] Si Minzhen, Wu Guorong, Zhang Pengxiang. Quenching and enhancement of fluorescence of dye molecule on negation and positive colloid silver particles [J]. Chin. J. Chem. Phys.(化学物理学报), 2002, 15 (5):346-350 (in Chinese).[15] Liang Erjun, Zhang Pengxiang. Absorption and surface enhanced resonant Raman spectra of riboflavin in silver colloid [J]. Chin. J. Phys. (物理学报), 1991, 40 (2):198-204 (in Chinese).[16] Clippe P, Evrard R. Aggregation effect on the infrared absorption spectrum of small ionic crystals [J]. Phys. Rev. B, 1976, 14 (4):1715-1721.[17] Prochdzka M, Stepanek J, Vikova B, et al. Laser ablation:Preparation of "chemically pure" Ag colloids for surface-enhanced Raman scattering spectroscopy [J]. J. Molecular Structure, 1997, 410-411 :213-216.[18] Fang Yan, Wang Weining, Ning Donghai, et al. Tem investigation on silver sols after addition of KCl [J]. Acta Physica Sinica (物理学报), 1990, 39 (1):46-50 (in Chinese).[19] Xu Jingou, Wang Zhunben. Fluorescence Analysis Method [M]. Beijing: Science Press, 2006:64-81 (in Chinese).[20] Li Qun, Wang Wenyao, Gao Fuyuan, et al. Fluorescence lifetime measurement of haemato-porpyrin and lactoflavin [J].Acta Optica Sinica (光学学报), 1991, 11 (4):381-384 (in Chinese).[21] Barazzouk S, Kamat P V, Hotchandani S. Photoinduced electron transfer betweenchlorophyll a and gold nanoparticles [J]. J. Phys. Chem. B, 2005, 109 (2):716-723.
0
浏览量
218
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构