浏览全部资源
扫码关注微信
1. 厦门大学 材料学院, 福建 厦门 361005
2. 厦门大学 能源研究院, 福建 厦门 361005
3. 厦门大学 物理与机电工程学院, 福建 厦门 361005
收稿日期:2010-11-04,
修回日期:2010-12-28,
网络出版日期:2011-04-22,
纸质出版日期:2011-04-22
移动端阅览
李艳华, 潘淼, 庞爱锁, 武智平, 郑兰花, 陈朝. 电致发光成像技术在硅太阳能电池 隐性缺陷检测中的应用[J]. 发光学报, 2011,32(4): 378-382
LI Yan-hua, PAN Miao, PANG Ai-suo, WU Zhi-ping, ZHENG Lan-hua, CHEN Chao. The Application of Electroluminescence Imaging to Detection The Hidden Defects in Silicon Solar Cells[J]. Chinese Journal of Luminescence, 2011,32(4): 378-382
李艳华, 潘淼, 庞爱锁, 武智平, 郑兰花, 陈朝. 电致发光成像技术在硅太阳能电池 隐性缺陷检测中的应用[J]. 发光学报, 2011,32(4): 378-382 DOI: 10.3788/fgxb20113204.0378.
LI Yan-hua, PAN Miao, PANG Ai-suo, WU Zhi-ping, ZHENG Lan-hua, CHEN Chao. The Application of Electroluminescence Imaging to Detection The Hidden Defects in Silicon Solar Cells[J]. Chinese Journal of Luminescence, 2011,32(4): 378-382 DOI: 10.3788/fgxb20113204.0378.
论述了一种利用硅太阳能电池在一定偏压下的电致发光(Electroluminescence
EL )成像来检测硅太阳能电池隐性缺陷的方法。硅太阳能电池的EL波长范围为850~1 200 nm。正向偏压下的EL光强反映了少数载流子的浓度及其扩散长度
而反向偏压下的EL区和发光强度对应于电池的缺陷区域和缺陷密度。用硅CCD相机对硅太阳能电池的EL快速成像
然后根据EL成像的明暗强度可检测出电池的隐性缺陷。由于内在缺陷处EL强度比外在缺陷处受温度的影响更敏感
所以可利用电池缺陷处EL强度随温度变化的差异来辨别缺陷的类型。
A method of using electroluminescence (EL) imaging to detect the hidden defects in silicon solar cells under the condition of certain bias is presented in this paper. The EL wavelength of silicon solar cells ranges from 850 nm to 1 200 nm. In the case of forward bias
the EL intensity is related to the concentration and diffusion length of minority carriers
but under the reverse bias
EL regime and illumination intensity are corresponding to defect areas and defect density of battery
respectively. The EL of solar cells can be quickly captured by silicon CCD camera
and the hidden defects of silicon solar cell can be found according to the intensity value of EL imaging. Since the EL intensity of the intrinsic deficient is more sensitive to temperature than that of the extrinsic defect
the types of defect can be checked out by the difference of EL intensity
which responds to the change of temperature.
Kaminski A, Breitenstein O, Boyeaux J P, et al. Light beam induced current and infrared thermography studies of multi-crystalline silicon solar cells [J]. J. Phys.: Condens. Matter, 2004, 16 (2):S9-S18.[2] Breitenstein O, Bauer J, Rakotoniaina J P. Aterial-induced shunts in multicrystalline silicon solar cells [J]. Semiconductors, 2007, 41 (4):440-443.[3] Breitenstein O. Defect induced non-ideal dark I-V characteristics of solar cells [J]. Superlattices and Microstructures, 2009, 45 (4-5):182-189.[4] Breitenstein O, Bauer J, Trupke T, et al. On the detection of shunts in silicon solar cells by photo- and electro-luminescence imaging [J]. Progress in Photovoltaics: Research and Applications, 2008, 16 (4):325-330.[5] Dreckschmidt F, Kaden T, Fiedler H, et al. Electroluminescence investigation of the decoration of extended defects in multicrystaline silicon //22nd European Photovoltaic Solar Energy Conference, Milian, Italy, 2007:283-286.[6] Fuyuki T, Kitiyanan A. Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence [J]. Appl. Phys. A, 2009, 96 (1):189-196.[7] Munoz J, Lorenzo E, Martinez-Moreno F, et al. An investigation into hot-spots in two large grid-connected PV plants [J]. Progress in Photovoltaics: Research and Applications, 2008, 16 (8):693-701.
0
浏览量
145
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构