浏览全部资源
扫码关注微信
1. 天津工业大学 电气工程与自动化学院, 天津 300160
2. 半导体照明工程研发中心, 天津 300160
收稿日期:2010-05-20,
修回日期:2010-10-21,
网络出版日期:2011-04-22,
纸质出版日期:2011-04-22
移动端阅览
杨广华, 李晓云. 电极布局对硅LED性能的影响[J]. 发光学报, 2011,32(4): 374-377
YANG Guang-hua, LI Xiao-yun. Effect of The Electrode Layout on The Silicon LED Properties[J]. Chinese Journal of Luminescence, 2011,32(4): 374-377
杨广华, 李晓云. 电极布局对硅LED性能的影响[J]. 发光学报, 2011,32(4): 374-377 DOI: 10.3788/fgxb20113204.0374.
YANG Guang-hua, LI Xiao-yun. Effect of The Electrode Layout on The Silicon LED Properties[J]. Chinese Journal of Luminescence, 2011,32(4): 374-377 DOI: 10.3788/fgxb20113204.0374.
采用0.35 m 双栅标准CMOS工艺设计和制备了叶型硅发光器件。叶型硅发光器件由3个楔型器件的组合而成
pn结结构为n阱/p
+
结。使用奥林巴斯IC显微镜测得了器件的显微图形
并对器件进行了电学特性测试。器件工作在雪崩击穿下
开启电压为8.8 V
能够发出黄色可见光;正向偏置下
器件开启电压为0.8 V。在与已经制备的楔型器件比较时发现
器件发光受串联电阻分压影响
并且有点增强发光现象
这些情况均与器件的电极布局有关。
A leaf-shaped silicon light-emitting device is designed and fabricated with standard 0.35 m CMOS dual gate technology. The left-shaped light-emitting device includes three wedge-shaped emitting devices
and the pn junction structure is n well/p
+
junction. The device's photograph is measured using the Olympus IC microscope
and the electrical properties of devices were tested. The device operates in avalanche breakdown
and the threshold voltage is 8.8 V
which can emit yellow and visible light. Under forward bias condition
the turn-on voltage of the device is 0.8 V. Comparing with the wedge device
the leaf-shaped device is affected by the series resistance divider
and appears an enhanced luminescence on the tip. After analyzing the results
it is obtained that they are related to the layout of electrode.
Newman R.Visible light from a silicon p-n junction [J]. Phys. Rev., 1955, 100 (2):700-703.[2] Kobrinsky M J, Block B A, Zheng J, et al. On-chip optical interconnects [J]. Intel Technology Journal, 2004, 8 (2):129-142.[3] Akil N, Kerns S E, Kerns D V, et al. A multimechanism model for photon generation by silicon junctions in avalanche breakdown [J]. IEEE Transactions on Electron Devices, 1999, 46 (5):1022-1028.[4] Snyman L W, Aharoni H, du Plessis M, et al. Increased efficiency of silicon light emitting diodes in a standard 1.2 microncomplementary metal oxide semiconductor technology [J].Opt. Eng., 1998, 37 (7):2133-2141.[5] Xu Q F, Almeida V R, Lipson M, et al. Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides [J]. Optics Express, 2004, 12 (19):4437-4442.[6] Raghunathan V, Boyraz O, Jalali B. 20 dB on-off Raman amplification in silicon waveguides [J]. Quantum Electronics, 2006, 42 (2):160-170.[7] Chen Song, WANG Weibiao, Liang Jingqiu, et al. Two-dimensional square photonic crystal microcavities [J]. Chin. J. Lumin. (发光学报), 2007, 28 (1):7-11 (in Chinese).[8] Rong H, Liu A, Nicolaescu R, et al. Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide [J]. Appl.Phys.Lett., 2004, 85 (12):2196-2198.[9] Claps R, Raghunathan V, Dimitropoulos D, et al. Influence of nonlinear absorption on Raman amplification in Silicon waveguides [J]. Optics Express, 2004, 12 (12):2774-2780.[10] Zhang Peng, Xiao Jinglin. Influence of interaction between phonons on properties of polaron in a quantum dot [J]. Chin. J. Lumin.(发光学报), 2007, 28 (1):35-38 (in Chinese).[11] Che Yongli, Cao Xiaolong, Li Qingshan. The fluorescence spectra of Rh6G/oxidized porous silicon composite film [J]. Chin. J. Lumin.(发光学报), 2009, 30 (1):86-90 (in Chinese).[12] Hu Feng, Yi Lixin, Wang Shenwei, et al. Influence of sputtering Ar/O proportion and annealing method on the preparation and photoluminescent properties of silicon nanocrytals [J]. Chin. J. Lumin.(发光学报), 2009, 30 (2):243-246 (in Chinese).[13] Jiang Dong, Hu Xiaoyun, Zhang Dekai, et al. The luminescent properties of Eu doped SiO2 nano-matrix [J]. Chin. J. Lumin.(发光学报), 2009, 30 (2):247-251 (in Chinese).
0
浏览量
126
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构