浏览全部资源
扫码关注微信
河北大学 物理科学与技术学院,河北 保定,071002
收稿日期:2011-01-10,
修回日期:2011-02-12,
网络出版日期:2011-04-22,
纸质出版日期:2011-04-22
移动端阅览
于威, 徐焕钦, 徐艳梅, 王新占, 路万兵, 傅广生. 纳米硅粒子的表面氧化及其光致发光特性[J]. 发光学报, 2011,32(4): 347-352
YU Wei, XU Huan-qin, XU Yan-mei, WANG Xing-zhan, LU Wan-bing, FU Guang-sheng. Surface Oxidation and Photoluminescence Properties of Silicon Nanoparticle[J]. Chinese Journal of Luminescence, 2011,32(4): 347-352
于威, 徐焕钦, 徐艳梅, 王新占, 路万兵, 傅广生. 纳米硅粒子的表面氧化及其光致发光特性[J]. 发光学报, 2011,32(4): 347-352 DOI: 10.3788/fgxb20113204.0347.
YU Wei, XU Huan-qin, XU Yan-mei, WANG Xing-zhan, LU Wan-bing, FU Guang-sheng. Surface Oxidation and Photoluminescence Properties of Silicon Nanoparticle[J]. Chinese Journal of Luminescence, 2011,32(4): 347-352 DOI: 10.3788/fgxb20113204.0347.
采用射频等离子体增强化学气相沉积技术制备了纳米晶硅粒子
并对其溶液发光的稳态和瞬态特性进行了研究。稳态光致发光结果显示
新制备的纳米硅粉体表现为峰值位于440 nm附近的蓝色发光
经长时间氧化后
该波段发光强度显著增强
并且出现另一峰值位于750 nm附近的红色发光带。不同波长激发和时间分辨光致发光谱的分析表明
纳米硅粒子蓝色发光归因于粒子内部载流子的带-带跃迁过程
衰减时间在纳秒量级
氧化造成该波段发光衰减时间常数增加。氧化后出现的红色发光来源于载流子经由表面缺陷态的辐射复合
该发光衰减寿命微秒量级。
The silicon nanoparticle have been grown by radio-frequency plasmas-enhanced chemical vapor deposition technique and the photoluminescence(PL)of the silicon suspension have been studied by both steady-state and time-resolved photoluminescence spectra. The steady-state PL spectra of the silicon suspension show that a blue PL band around 440 nm is found for the as-prepared silicon suspension emits. An increase of the intensity for the blue band around 440 nm followed by a red photoluminescence centered at 750 nm after storing the suspension for two months. The steady-state PL spectra excited by different wavelength and time-resolved PL spectra of the samples demonstrate that the blue PL band with a delaytime of nanosecond order is caused by the band-to-band recombination in Si nanocrystals. The oxidation of the silicon nanoparticle causes the decaytime increasing. The red PL band originates from radiation recombination of carries via defect/surface-related states and the delay-time of which is on the order of microsecond.
Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl. Phys. Lett., 1990, 57 (10):1046-1048.[2] Che Yongli, Cao Xiaolong, Li Qingshan. The fluorescence spectra of Rh6G/oxidized porous silicon composite film [J]. Chin. J. Lumin. (发光学报), 2009, 30 (1):86-90 (in Chinese).[3] Hu Feng, Yi Lixin, Wang Shenwei, et al. Influence of sputtering Ar/O proportion and annealing method on the preparation and photoluminescent properties of silicon nanocrystals [J]. Chin. J. Lumin. (发光学报), 2009, 30 (2):243-246 (in Chinese).[4] Du Yufan, Yi Lixin, Wang Shenwei, et al. Effect of Si nanocrystals seze on photoluminescence intensity of Si nanocrystals embedded in Si/SiO2 superlattices after Ce3+ implantation [J]. Chin. J. Lumin. (发光学报), 2009, 30 (3):417-420 (in Chinese).[5] Pavesi L, Negro L D, Mazzoleni C. Optical gain in silicon nanocrystals [J]. Nature, 2000, 408 (6811):440-444.[6] Jurbergs D, Rogojina E. Silicon nanocrystals with ensemble quantum yields exceeding 60% [J]. Appl. Phys. Lett., 2006, 88 (23):233116-1-3.[7] Sykora L, Mangolini M, Schaller R D, et al. Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies [J]. Phys. Rev. Lett., 2008, 100 (6):067401-1-4.[8] Ledoux G, Gong J, Huisken F, et al. Photoluminescence of size-separated silicon nanocrystals:Confirmation of quantum confinement [J]. Appl. Phys. Lett., 2002, 80 (25):4834-4836.[9] Luppi M, Ossicini S. Ab initio study on oxidized silicon clusters and silicon nanocrystals embedded in SiO2: Beyond the quantum confinement effect [J]. Phys. Rev. B, 2005, 71 (3):035340-1-15.[10] Wolkin M V, Jorne J, Fauchet P M, et al. Electronic states and luminescence in porous silicon quantum dots: The role of oxygen [J]. Phys. Rev. Lett., 1999, 82 (1):197-200.[11] Puzder A, Williamson A J, Grossman J C, et al. Surface chemistry of silicon nanoclusters [J]. Phys. Rev. Lett., 2002, 88 (9):097401-1-4.[12] Zhou Z Y, Brus L, Friesner R. Electronic structure and luminescence of 1.1- and 1.4 nm silicon nanocrystals: Oxide shell versus hydrogen passivation [J]. Nano Lett., 2003, 3 (2):163-167.[13] Lehmann V. Porous silicon formation:a quantum wire effect [J]. Appl. Phys. Lett., 1991, 58 (8):856-858.[14] Proot J P, Delerue C, Allan G. Electronic structure and optical properties of silicon crystallites:application to porous silicon [J]. Appl. Phys. Lett., 1992, 61 (16):1948-1950.[15] Xie Y H, Wilson W L, Ross F M. Luminescence and structural study porous silicon films [J]. J. Appl. Phys., 1992, 71 (5):2403-2407.[16] Sher P H, Smith J M, Dalgarno P A, et al. Power law carrier dynamics in semiconductor nanocrystals at nanosecond time scales [J]. Appl. Phys. Lett., 2008, 92 (10):101111-1-3.[17] Wolfe J P. Thermodynamics of excitons in semiconductors [J]. Physics Today, 1982, 35 (3):46-54.[18] Warner J H, Rubinsztein-Dunlop H, Tilley R D. Surface morphology dependent photoluminescence from colloidal silicon nanocrystals [J]. J. Phys. Chem. B, 2005, 109 (41):19064-19067.[19] Wang Li, Zhang Guangbin, Qin Xiaoying, et al. Self-assembly of SiOx novel nanostructures and their optical property [J]. Chin. J. Lumin.(发光学报), 2010, 31 (3):390-394 (in Chinese).[20] Wu X L, Xiong S J, Fan D L, et al. Stabilized electronic state and its luminescence at the surface of oxygen-passivated porous silicon [J]. Phys. Rev. B, 2000, 62 (12):R7759-R7762.
0
浏览量
249
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构