浏览全部资源
扫码关注微信
1. 中国科学院长春光学精密机械与物理研究所激发态物理重点实验室,吉林 长春,130033
2. 中国科学院 研究生院, 北京 100039
收稿日期:2010-05-31,
修回日期:2010-07-07,
网络出版日期:2011-01-22,
纸质出版日期:2011-01-22
移动端阅览
张岩, 宁永强, 秦莉, 孙艳芳, 刘云, 王立军. 小发散角垂直腔面发射激光器的设计与制作[J]. 发光学报, 2011,32(1): 47-52
ZHANG Yan, NING Yong-qiang, QIN Li, SUN Yan-fang, LIU Yun, WANG Li-jun. Design and Fabrication of Vertical-cavity Surface-emitting Laser with Small Divergence[J]. Chinese Journal of Luminescence, 2011,32(1): 47-52
张岩, 宁永强, 秦莉, 孙艳芳, 刘云, 王立军. 小发散角垂直腔面发射激光器的设计与制作[J]. 发光学报, 2011,32(1): 47-52 DOI: 10.3788/fgxb20113201.0047.
ZHANG Yan, NING Yong-qiang, QIN Li, SUN Yan-fang, LIU Yun, WANG Li-jun. Design and Fabrication of Vertical-cavity Surface-emitting Laser with Small Divergence[J]. Chinese Journal of Luminescence, 2011,32(1): 47-52 DOI: 10.3788/fgxb20113201.0047.
针对垂直腔面发射激光器单管及列阵器件较大的远场发散角
对大直径单管器件及列阵单元器件的有源区中的电流密度分布进行了模拟计算
分析了器件高阶横模产生的原因。分别采用优化p面电极直径和镀制额外金层结构来抑制单管及列阵器件远场光斑中的高阶边模
所制作的氧化孔径为600 m的单管器件的远场发散角半角宽度从30降低到15;氧化孔径200 m
单元间距280 m的44列阵的远场发散角从30降低到10。
In this paper
dramatic improvements in vertical cavity surface emitting laser (VCSEL) perfor-mance have been obtained due to the advanced fabrication techniques and electrical confinement
as well as the structural design and growth of Bragg mirrors. A numerical simulation of current density distribution in the active of a large aperture single device and an array element were constructed. It is found that the current density at the perimeter of the oxide aperture is higher than at the center of the active region. The highe order transverse modes were excited due to the current crowding at the perimeter of the oxide aperture
which lea-ding to large divergence angle. And it is suppressed by optimizing the p-contact diameter in a single device and suppressed by using an extra Au layer. The far-field angle of a single device with a 600 m oxide aperture decreased from 30to 15 when the p-contact diameter is optimized from 650 m to 580 m
and there is a slight increase in output power due to the optimization. By using an extra Au layer
the output aperture of a 44 two dimension array element is decreased to 180 m
and the far-field angle of the array device is suppressed to 10. There is a slight drop in output power due to the introduction of the extra Au layer.
Iga K. Vertical-cavity surface-emitting laser: its conception and evolution [J]. Jpn. J. Appl. Phys., 2008, 47 (1):1-10.[2] Weigl B, Grabherr M, Jung C, et al. High-performance oxide-confined GaAs VCSELs [J]. IEEE J. Selected Topics Quant. Electron., 1997, 3 (2):409-415.[3] Peng Biao, Ning Yongqiang, Qin Li, et al. Polarization characteristics of 980 nm high power vertical cavity surface emitting laser [J]. Chin. J. Lumin. (发光学报), 2008, 29 (5):845-850 (in Chinese).[4] Ma Qiang, Tian Zhenhua, Wang Zhenfu, et al. A theoretical model of high power VCSEL based on the thermal-offset-current [J]. Chin. J. Lumin. (发光学报), 2009, 30 (4):463-466 (in Chinese).[5] Liang Xuemei, Lu Jinkai, Cheng Liwen, et al. Structural design of vertical-external-cavity surface-emitting semiconductor laser with 920 mm [J]. Chin. J. Lumin. (发光学报), 2010, 31 (1):79-85 (in English).[6] Zhang Yan, Ning Yongqiang, Wang Ye, et al. A linear array of 980 nm VCSEL and its high temperature operation characteristics [J]. Journal of Semiconductors, 2009, 30 (11):114008-1-4.[7] Seurin J F, Xu G Y, Khalfin V, et al. Progress in high-power high-efficiency VCSEL arrays [J]. SPIE, 2009, 7229 :722903-1-11.[8] Sun Yanfang, Jin Zhenhua, Ning Yongqiang, et al. Fabrication and experimental characterization of high power bottom-emitting VCSELs [J]. Optics and Precision Engineering (光学 精密工程), 2004, 12 (5):449-453 (in Chinese).[9] Chow W W, Choquette K D, Crawford M H, et al. Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers [J]. IEEE Journal of Quantum Electronics, 1997, 33 (10):1810-1824.[10] Seurin J F, Xu G Y, Wynn J D, et al. High-power vertical-cavity surface-emitting laser pump sources [J]. IEEE Leos Newsletter, 2007, 21 (4):28-32.[11] Li Te, Ning Yongqiang, Sun Yanfang, et al. Beam quality of 980 nm high power vertical-cavity surface-emitting Laser [J]. Chinese J. Lasers (中国激光), 2007, 34 (5):641-645 (in Chinese).[12] Seurin J F, Ghosh C L, Khalfin V, et al. High-power high-efficiency 2D VCSEL arrays [J]. SPIE, 2008, 6908 :690808-1-14.[13] Angelos C, Hinckley S, Michalzik R, et al. Simulation of current spreading in bottom-emitting vertical cavity surface emitting lasers for high power operation [J]. SPIE, 2004, 5277 :261-272.[14] Yan Changling, Ning Yongqiang, Qin Li, et al. High-power vertical-cavity surface-emitting laser with an extra Au layer [J]. IEEE Photon. Technol. Lett., 2005, 17 (8):1599-1601.
0
浏览量
156
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构