浏览全部资源
扫码关注微信
1. 吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室, 吉林 长春 130012
2. 江阴新顺微电子有限公司, 江苏 江阴,214431
收稿日期:2010-04-06,
修回日期:2010-06-07,
网络出版日期:2011-01-22,
纸质出版日期:2011-01-22
移动端阅览
张丹丹, 刘磊石, 陈路, 王海, 刘式墉, 冯晶. Fe<sub>3</sub>O<sub>4</sub>p型掺杂对有机电致发光器件性能的提高[J]. 发光学报, 2011,32(1): 42-46
ZHANG Dan-dan, LIU Lei-shi, CHEN Lu, WANG Hai, LIU Shi-yong, FENG Jing. Improvement of The Performances of Organic Light-emitting Devices Using Fe<sub>3</sub>O<sub>4</sub> as p-dopant[J]. Chinese Journal of Luminescence, 2011,32(1): 42-46
张丹丹, 刘磊石, 陈路, 王海, 刘式墉, 冯晶. Fe<sub>3</sub>O<sub>4</sub>p型掺杂对有机电致发光器件性能的提高[J]. 发光学报, 2011,32(1): 42-46 DOI: 10.3788/fgxb20113201.0042.
ZHANG Dan-dan, LIU Lei-shi, CHEN Lu, WANG Hai, LIU Shi-yong, FENG Jing. Improvement of The Performances of Organic Light-emitting Devices Using Fe<sub>3</sub>O<sub>4</sub> as p-dopant[J]. Chinese Journal of Luminescence, 2011,32(1): 42-46 DOI: 10.3788/fgxb20113201.0042.
将金属氧化物Fe
3
O
4
在空穴传输材料中进行p型掺杂并制作有机电致发光器件
使器件的开启电压由5 V降至2.5 V;20 mA/cm
2
电流密度下的功率效率由1.2 lm/W提高到2.0 lm/W;10 V下的亮度由1 680 cd/m
2
提高到30 590 cd/m
2
。紫外-可见-红外吸收光谱及紫外光电子能谱的测试分析结果表明
p型掺杂剂的引入不仅能够提高器件的空穴传输能力
而且使空穴的注入势垒降低了0.37 eV
从而可制作出低驱动、高效率、高亮度的有机电致发光器件的制作。
This paper reports a high performances Fe
3
O
4
doped organic light emitting devices (OLEDs). The tris-(8-hydroxyquinoline) aluminum (Alq
3
)-based OLEDs with Fe
3
O
4
doped N
N '-diphenyl - N
N'-bis (1
1'-biphenyl)-4
4'-diamine (NPB) exhibit a very low turn-on voltage of 2.5 V
and a high luminance of 30 590 cd/m
2
while the turn-on voltage is 5 V and the luminance is 1 680 cd/m
2
at 10 V for the undoped one. The power efficiency is increased from 1.2 lm/W to 2.0 lm/W at the current density of 20 mA/cm
2
by inserting the Fe
3
O
4
-doped NPB layer. The Fe
3
O
4
doping effects on the OLEDs are further clarified by analyzing the results of ultraviolet/visible/near-infrared absorption spectra and the characteristics on the hole-only devices. The improvements in device performances are attributed to the improved hole transport and conducti-vity through the formation of the charge transfer complex between Fe
3
O
4
and NPB. Results on the UV photo-electron spectroscopy studies reveal that the hole-injection barrier from ITO to NPB is reduced by 0.37 eV by introducing the doped layer NPB ∶ Fe
3
O
4
. This enhances the hole injection and decreases the driving voltage
resulting a higher power efficiency. Therefore
the power consumption is lowered
and that good for prolonging the lifetime.
Li Yunbai, Teng Feng, Xu Zheng, et al. Electroluminescent mechanism of Ir(PPY)3 doped PVK [J]. Chin. J. Lumin. (发光学报), 2004, 26 (6):633-638 (in Chinese).[2] Chen Wei, Rao Haibo, Jiang Quan, et al. Effect of p-type deep accepter-like trap on the charge carrier transportation of OLEDs [J]. Chin. J. Lumin. (发光学报), 2009, 30 (1):51-54 (in Chinese).[3] Ma Tao, Yu Junsheng, Li Lu, et al. Characterization of organic light-emitting devices based on NPB doped in poly(N-vinylcarbazole)matrix [J]. Chin. J. Lumin. (发光学报), 2008, 29 (5):809-814 (in Chinese).[4] Xie Guohua, Meng Yanlong, Wu Fengmin, et al. Very low turn-on voltage and high brightness tris-(8-hydroxyquinoline) aluminum-based organic light- emitting diodes with a MoO<em>x p-doping layer [J]. Appl. Phys. Lett., 2008, 92 (9):093305-1-3.[5] Chang C C, Hsieh M T, Chen J F, et al. Highly power efficient organic light-emitting diodes with a p-doping layer [J]. Appl. Phys. Lett., 2006, 89 (25):253504-1-3.[6] Chan C K, Kim E G, Brdas J L, et al. Molecular n-type doping of 1,4,5,8-naphthalene tetracarboxylic dianhydride by pyronin B studied using direct and inverse photoelectron spectroscopy [J]. Adv. Funct. Mater., 2006, 16 (6):831-837.[7] Gao Z Q, Mi B X, Xu G Z, et al. An organic p-type dopant with high thermal stability for an organic semiconductor [J]. Chem. Commun., 2008(1):117-119.[8] Kido J, Matsumoto T. Bright organic electroluminescent devices having a metal-doped electron-injecting layer [J]. Appl. Phys. Lett., 1998, 73 (20):2866-2868.[9] Zhu X L, Sun J X, Peng H J, et al. Vanadium pentoxide modified polycrystalline silicon anode for active-matrix organic light-emitting diodes [J]. Appl. Phys. Lett., 2005, 87 (15):153508-1-3.[10] Leem D S, Park H D, Kang J W, et al. Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer [J]. Appl. Phys. Lett., 2007, 91 (1):011113-1-3.[11] Zhang Dandan, Feng Jing, Liu Yuefeng, et al. Enhanced hole injection in organic light-emitting devices by using Fe3O4 as an anodic buffer layer [J]. Appl. Phys. Lett., 2009, 94 (22):223306-1-3.[12] Yook K S, Lee J Y. Low driving voltage in organic light-emitting diodes using MoO3 as an interlayer in hole transport layer [J]. Synth. Met., 2009, 159 (1-2):69-71.[13] Mi B X, Gao Z Q, Cheah K W, et al. Organic light-emitting diodes using 3,6-difluoro-2,5,7,7,8,8- hexacyanoquinodi-methane as p-type dopant [J]. Appl. Phys. Lett., 2009, 94 (7):073507-1-3.[14] Matsushima T, Kinoshita Y, Murata H. Formation of ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers [J]. Appl. Phys. Lett., 2007, 91 (25):253504-1-3.[15] Lee Y, Kim J, Kwon S, et al. Interface studies of aluminum, 8-hydroxyquinolatolithium (Liq) and Alq3 for inverted OLED application [J]. Org. Electron., 2008, 9 (3):407-412.[16] Wang F X, Qiao X F, Xiong T, et al. The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes [J]. Org. Electron., 2008, 9 (6):985-993.[17] Xue J G, Forrest S R. Bipolar doping between a molecular organic donor-acceptor couple [J]. Phys. Rev. B, 2004, 69 (24):245322-1-8.
0
浏览量
92
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构