浏览全部资源
扫码关注微信
1. 河北大学 物理科学与技术学院,河北 保定,071002
2. 河北大学 电子信息工程学院,河北 保定,071002
收稿日期:2010-04-15,
修回日期:2010-08-05,
网络出版日期:2011-01-22,
纸质出版日期:2011-01-22
移动端阅览
杨志平, 闻建伟, 刘玉峰, 李立虎, 杨艳民, 周东站, 马淑媛, 于红伟. Ca<sub>4</sub>Y<sub>6</sub>Si<sub>6</sub>O<sub>25</sub>∶Eu<sup>2+</sup>绿色荧光粉的发光特性[J]. 发光学报, 2011,32(1): 7-11
YANG Zhi-ping, WEN Jian-wei, LIU Yu-feng, LI Li-hu, YANG Yan-min, MA Shu-yuan, YU Hong-wei. Luminescence Property of Ca<sub>4</sub>Y<sub>6</sub>Si<sub>6</sub>O<sub>25</sub> ∶ Eu<sup>2+</sup> Green Phosphor[J]. Chinese Journal of Luminescence, 2011,32(1): 7-11
杨志平, 闻建伟, 刘玉峰, 李立虎, 杨艳民, 周东站, 马淑媛, 于红伟. Ca<sub>4</sub>Y<sub>6</sub>Si<sub>6</sub>O<sub>25</sub>∶Eu<sup>2+</sup>绿色荧光粉的发光特性[J]. 发光学报, 2011,32(1): 7-11 DOI: 10.3788/fgxb20113201.0007.
YANG Zhi-ping, WEN Jian-wei, LIU Yu-feng, LI Li-hu, YANG Yan-min, MA Shu-yuan, YU Hong-wei. Luminescence Property of Ca<sub>4</sub>Y<sub>6</sub>Si<sub>6</sub>O<sub>25</sub> ∶ Eu<sup>2+</sup> Green Phosphor[J]. Chinese Journal of Luminescence, 2011,32(1): 7-11 DOI: 10.3788/fgxb20113201.0007.
采用高温固相法合成了Ca
4
Y
6
Si
6
O
25
∶ Eu
2+
绿色荧光材料。通过X射线衍射分析得知
Ca
4
Y
6
Si
6
O
25
属于六方晶系
具有
P
6
3
/
m
(176)空间点群结构。测定了Eu
2+
的激发光谱和发射光谱。Ca
4
Y
6
Si
6
O
25
∶ Eu
2+
的激发光谱为350~450 nm的宽带谱
这与近紫外光LED芯片相匹配。发射光谱是峰值为527 nm的不对称宽带发射
这是因为Eu
2+
占据了晶格中Ca
2+
的位置
并产生了两种不同的发光中心。研究了Eu
2+
的含量对Ca
4(1-
x
)
Y
6
Si
6
O
25
∶ 4
x
Eu
2+
发光性能的影响
随着Eu
2+
浓度的增大
材料的发光强度先增强后减弱
Eu
2+
的最佳掺杂摩尔分数为20%(
x
=0.05)。根据Dexter理论得出
浓度猝灭机理为电四极-电四极相互作用。
Ca
4
Y
6
Si
6
O
25
∶ Eu
2+
green phosphor was prepared by high temperature solid-state reaction. The XRD speetrum indicates that Ca
4
Y
6
Si
6
O
25
has a hexagonal crystal structure with a space group of
P6
3
/m
(176). The excitation and emission spectra of Ca
4
Y
6
Si
6
O
25
∶ Eu
2+
were measured when the mole fraction of Eu
2+
was 20%. Its excitation spectrum is a broad band
from 350 nm to 450 nm
which matches with near ultraviolet LED chip. The emission spectrum of Ca
4
Y
6
Si
6
O
25
∶ Eu
2+
exhibits an asymmetry broad band with the peak center at 527 nm
and it is because that Eu
2+
takes the place of Ca
2+
and forms two different luminescence centers. The effect of Eu
2+
concentration on Ca
4(1-
x
)
Y
6
Si
6
O
25
∶ 4
x
Eu
2+
intensity was also investigated. With the increase of Eu
2+
concentration
the luminescence intensity of the green phosphor get to maximum and then decrease. The optimal mole fraction of Eu
2+
is 20%(
x
=0.05). According to Dexter theory
concentration quenching can be attributed to quadrupole-quadrupole interaction.
Pan Zhengwei, He Hong, Song Xiufeng, et al. Researches progress of white-light-emitting diodes using europium activated silicates [J]. J. Chin. Ceram. Soc. (硅酸盐学报), 2009, 37 (9):1590-1596 (in Chinese).[2] Wang Zhijun, Yang Zhiping, Wang Ying, et al. Luminescence characteristics of Eu2+ activated strontium silicate phosphors [J]. Chin. J. Lumin. (发光学报), 2009, 30 (6):754-757 (in Chinese).[3] Xu Jing, Xia Wei, Deng Hua, et al. Preparation and luminescent properties of high quality Sr2-xBa<em>xSiO4 ∶ Eu2+ phosphors [J]. Chin. J. Lumin. (发光学报), 2009, 30 (5):617-623 (in Chinese).[4] Hu Yanming, Wu Shumei. The research and simulation of LED arrays in lighting [J]. Chin. J. Lumin. (发光学报), 2009, 30 (4):436-440 (in English).[5] Bai Lin, Liang Hongbao. The designing and driving technology of the illumination board of the high power bright white LED street lamp [J]. Chin. J. Lumin. (发光学报), 2009, 30 (4):487-494 (in Chinese).[6] Yamane H, Nagasawa T, Murakami Y, et al. Crystal structure and thermal expansion of Ca2Y2Si2O9 [J]. Materials Research Bulletin, 1998, 33 (6):845-853.[7] Han X M, Lin J, Yu M, et al. Sol-gel deposition and luminescence properties of spherical phosphors Ca2Y8(SiO4)6O2 ∶ Eu3+ [J]. Key Engineering Materials, 2008, 368-372 :378-380.[8] Bandi V R, Nien Y T, Lu T H. Effect of calcination temperature and concentration on luminescence properties of novel Ca3Y2Si3O12 ∶ Eu phosphors [J]. J. Am. Ceram. Soc., 2009, 92 (12):2953-2956.[9] Piccinelli F, Speghini A, Mariotto G, et al. Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12 [J]. J. Rare Earths, 2009, 27 (4):555-559.[10] Wanmaker W L, Ter Vrugt J W, Verlijsdonk J G. Synthesis of new compounds with apatite structure [J]. Philips Res. Rep., 1971, 26 :373-381.[11] Lin Jun, Su Qiang. Comparative study of Ca4Y6(SiO4)6O ∶ A phosphors prepared by Sol-gel and dry methods (A=Pb2+ , Eu3+ , Tb3+ , Dy3+) [J]. J. Mater. Chem., 1995, 5 (4):603-606.[12] Hiramatsu R, Ishida K, Aiga F, et al. Tb3+ luminescence by energy transfer from Eu2+ in (Sr, Ba)2SiO4 phosphor [J].J. Appl. Phys., 2009, 106 (9):093513-1-7.[13] Chang Chunkuei, Chen Tengming. White light generation under violet-blue excitation from tunable green-to-red emitting Ca2MgSi2O7 ∶ Eu,Mn through energy transfer [J]. Appl. Phys. Lett., 2007, 90 (16):161901-1-3.[14] Yao S S, Xue L H, Li Y Y, et al. Concentration quenching of Eu2+ in a novel blue-green emitting phosphor: Ba2ZnSi2O7 ∶ Eu2+ [J]. Appl. Phys. B, 2009, 96 (1):39-42.[15] Tamura Y, Shibukawa A. Optical studies of CaS ∶ Eu,Sm infrared stimulable phosphors [J]. Jpn. J. Appl. Phys., 1993, 32 (7):3187-3196.[16] Ma Mingxing, Zhu Dachuan, Tu Mingjing. The effect of Eu2+ doping concentration on luminescence properties of BaAl2Si2O8 ∶ Eu2+ blue phosphor [J]. Acta Phys. Sin.(物理学报), 2009, 58 (8):5826-5830 (in Chinese).[17] Fan Wenhui, Liu Ying, Wang Yongchang, et al. Concentration quenching in electron trapping materials [J]. Semiconductor Optoelectronics (半导体光电), 1999, 20 (3):171-174 (in Chinese).
0
浏览量
67
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构