浏览全部资源
扫码关注微信
1.泉州师范学院物理与信息工程学院 福建省先进微纳光子技术与器件重点实验室, 福建 泉州 362000
2.福州大学 先进制造学院, 福建 泉州 362200
3.福建师范大学 光电与信息工程学院, 福建 福州 350117
[ "姚广平(1989-),男,福建泉州人,硕士,实验师,2016年于福建师范大学获得硕士学位,主要从事有机光电材料与器件、电子技术的研究。 E-mail: 375130413@qq.com" ]
[ "苏子生(1981-),男,福建闽清人,博士,教授,2009年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事有机光电材料与器件的研究。 E-mail: suzs@qztc.edu.cn" ]
收稿日期:2023-08-30,
修回日期:2023-09-14,
纸质出版日期:2023-11-05
移动端阅览
姚广平,文超,刘佳澎等.缺陷对全无机钙钛矿太阳能电池性能的影响[J].发光学报,2023,44(11):2033-2040.
YAO Guangping,WEN Chao,LIU Jiapeng,et al.Effect of Defects on Performance of All Inorganic Perovskite Solar Cells[J].Chinese Journal of Luminescence,2023,44(11):2033-2040.
姚广平,文超,刘佳澎等.缺陷对全无机钙钛矿太阳能电池性能的影响[J].发光学报,2023,44(11):2033-2040. DOI: 10.37188/CJL.20230196.
YAO Guangping,WEN Chao,LIU Jiapeng,et al.Effect of Defects on Performance of All Inorganic Perovskite Solar Cells[J].Chinese Journal of Luminescence,2023,44(11):2033-2040. DOI: 10.37188/CJL.20230196.
利用一维太阳能电池仿真软件SCAPS对全无机钙钛矿太阳能电池中缺陷对器件性能的影响进行了研究。研究表明,在ITO/SnO
2
/CsPbI
3
/CuI/Au电池中,CuI/CsPbI
3
界面和CsPbI
3
光活性层缺陷密度对器件的性能具有较大影响。随着缺陷密度增大,器件的开路电压、短路电流、填充因子和光电转化效率均减小,尤其是当缺陷密度大于10
15
cm
-3
后,器件性能显著下降。相反地,CsPbI
3
/SnO
2
界面缺陷对器件性能无显著影响。通过优化器件的缺陷密度、光活性层的厚度和受主掺杂浓度,全无机钙钛矿太阳能电池的光电转化效率可以达到20%以上。
The effects of defects on the performance of all inorganic perovskite solar cells was studied using a one-dimensional solar cell simulation software SCAPS. It is found that in the device ITO/SnO
2
/CsPbI
3
/CuI/Au, the density of the defects at the CuI/CsPbI
3
interface and in the CsPbI
3
photoactive layer has dramatically influence on the performance of the device. With the increase of the defect density, the open-circuit voltage, short-circuit current, filling factor, and power conversion efficiency of the device all decrease, especially when the defect density exceeds 10
15
cm
-3
. On the contrary, the defects at the CsPbI
3
/SnO
2
interface have almost no effect on device performance. By optimizing the defect density of the device, the thickness and doping concentration of the photoactive layer, a power conversion efficiency higher than 20% can be obtained in the all inorganic perovskite solar cells.
KOJIMA A , TESHIMA K , SHIRAI Y , et al . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc. , 2009 , 131 ( 17 ): 6050 - 6051 . doi: 10.1021/ja809598r http://dx.doi.org/10.1021/ja809598r
ZHAO Y , MA F , QU Z H , et al . Inactive (PbI 2 ) 2 RbCl stabilizes perovskite films for efficient solar cells [J]. Science , 2022 , 377 ( 6605 ): 531 - 534 . doi: 10.1126/science.abp8873 http://dx.doi.org/10.1126/science.abp8873
YOO J J , SEO G , CHUA M R , et al . Efficient perovskite solar cells via improved carrier management [J]. Nature , 2021 , 590 ( 7847 ): 587 - 593 . doi: 10.1038/s41586-021-03285-w http://dx.doi.org/10.1038/s41586-021-03285-w
JEONG J , KIM M , SEO J , et al . Pseudo-halide anion engineering for α-FAPbI 3 perovskite solar cells [J]. Nature , 2021 , 592 ( 7854 ): 381 - 385 . doi: 10.1038/s41586-021-03406-5 http://dx.doi.org/10.1038/s41586-021-03406-5
LI Z , LI B , WU X , et al . Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells [J]. Science , 2022 , 376 ( 6591 ): 416 - 420 . doi: 10.1126/science.abm8566 http://dx.doi.org/10.1126/science.abm8566
MIN H , LEE D Y , KIM J , et al . Perovskite solar cells with atomically coherent interlayers on SnO 2 electrodes [J]. Nature , 2021 , 598 ( 7881 ): 444 - 450 . doi: 10.1038/s41586-021-03964-8 http://dx.doi.org/10.1038/s41586-021-03964-8
JIANG Q , TONG J H , XIAN Y M , et al . Surface reaction for efficient and stable inverted perovskite solar cells [J]. Nature , 2022 , 611 ( 7935 ): 278 - 283 . doi: 10.1038/s41586-022-05268-x http://dx.doi.org/10.1038/s41586-022-05268-x
NREL . Interactive best research-cell efficiency chart [EB/OL]. [ 2023-08-15 ]. https://www.nrel.gov/pv/interactive-cell-efficiency.html https://www.nrel.gov/pv/interactive-cell-efficiency.html . doi: 10.2172/6700 http://dx.doi.org/10.2172/6700
WANG R , MUJAHID M , DUAN Y , et al . A review of perovskites solar cell stability [J]. Adv. Funct. Mater. , 2019 , 29 ( 47 ): 1808843 . doi: 10.1002/adfm.201808843 http://dx.doi.org/10.1002/adfm.201808843
NAZIR G , LEE S Y , LEE J H , et al . Stabilization of perovskite solar cells: recent developments and future perspectives [J]. Adv. Mater. , 2022 , 34 ( 50 ): 2204380 . doi: 10.1002/adma.202204380 http://dx.doi.org/10.1002/adma.202204380
刘鲲鹏 , 刘德烨 , 刘凤敏 . 全无机钙钛矿太阳能电池湿度稳定性和光热稳定性研究进展 [J]. 发光学报 , 2021 , 42 ( 4 ): 486 - 503 . doi: 10.37188/CJL.20200343 http://dx.doi.org/10.37188/CJL.20200343
LIU K P , LIU D Y , LIU F M . Research progress in humidity stability and light-thermal stability of all-inorganic perovskite solar cells [J]. Chin. J. Lumin. , 2021 , 42 ( 4 ): 486 - 503 . (in Chinese) . doi: 10.37188/CJL.20200343 http://dx.doi.org/10.37188/CJL.20200343
EPERON G E , PATERNÒ G M , SUTTON R J , et al . Inorganic caesium lead iodide perovskite solar cells [J]. J. Mater. Chem. A , 2015 , 3 ( 39 ): 19688 - 19695 . doi: 10.1039/c5ta06398a http://dx.doi.org/10.1039/c5ta06398a
TAN S , TAN C Y , CUI Y Q , et al . Constructing an interfacial gradient heterostructure enables efficient CsPbI 3 perovskite solar cells and printed minimodules [J]. Adv. Mater. , 2023 , 35 ( 28 ): 2301879 . doi: 10.1002/adma.202301879 http://dx.doi.org/10.1002/adma.202301879
MALI S S , PATIL J V , SHAO J Y , et al . Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency [J]. Nat. Energy , 2023 , 8 ( 9 ): 989 - 1001 . doi: 10.1038/s41560-023-01310-y http://dx.doi.org/10.1038/s41560-023-01310-y
HAWASH Z , ONO L K , RAGA S R , et al . Air-exposure induced dopant redistribution and energy level shifts in spin-coated spiro-meOTAD films [J]. Chem. Mater. , 2015 , 27 ( 2 ): 562 - 569 . doi: 10.1021/cm504022q http://dx.doi.org/10.1021/cm504022q
LIU X , ZHENG B L , SHI L , et al . Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive [J]. Nat. Photonics , 2023 , 17 ( 1 ): 96 - 105 . doi: 10.1038/s41566-022-01111-x http://dx.doi.org/10.1038/s41566-022-01111-x
PENG Y , YAACOBI-GROSS N , PERUMAL A K , et al . Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers [J]. Appl. Phys. Lett. , 2015 , 106 ( 24 ): 243302 . doi: 10.1063/1.4922758 http://dx.doi.org/10.1063/1.4922758
CHRISTIANS J A , FUNG R C M , KAMAT P V . An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide [J]. J. Am. Chem. Soc. , 2014 , 136 ( 2 ): 758 - 764 . doi: 10.1021/ja411014k http://dx.doi.org/10.1021/ja411014k
ZHANG J X , ZHANG G Z , SU P Y , et al . 1D choline-PbI 3 -based heterostructure boosts efficiency and stability of CsPbI 3 perovskite solar cells [J]. Angew. Chem. Int. Ed. , 2023 , 62 ( 25 ): e202303486 . doi: 10.1002/anie.202303486 http://dx.doi.org/10.1002/anie.202303486
CHEN W T , ZHANG S S , LIU Z H , et al . A tailored nickel oxide hole-transporting layer to improve the long-term thermal stability of inorganic perovskite solar cells [J]. Sol. RRL , 2019 , 3 ( 11 ): 1900346 . doi: 10.1002/solr.201900346 http://dx.doi.org/10.1002/solr.201900346
LIN L Y , JIANG L Q , LI P , et al . Simulated development and optimized performance of CsPbI 3 based all-inorganic perovskite solar cells [J]. Sol. Energy , 2020 , 198 : 454 - 460 . doi: 10.1016/j.solener.2020.01.081 http://dx.doi.org/10.1016/j.solener.2020.01.081
SHEN H , LI X K , ZHANG X , et al . Constructing gradient structure to increase efficiency for carbon-based hole transport layer free all-inorganic perovskite solar cells using SCAPS-1D [J]. Sol. Energy , 2023 , 253 : 240 - 249 . doi: 10.1016/j.solener.2023.02.037 http://dx.doi.org/10.1016/j.solener.2023.02.037
BANSAL N K , PORWAL S , DIXIT H , et al . A theoretical study to investigate the impact of bilayer interfacial modification in perovskite solar cell [J]. Energy Technol. , 2023 , 11 ( 4 ): 2201395 . doi: 10.1002/ente.202201395 http://dx.doi.org/10.1002/ente.202201395
ISLAM M A , AKHTARUZZAMAN M , MOTTAKIN M , et al . Potential-induced performance degradation (PID) applied on a perovskite solar cell: exploring its effect on cell performance through numerical simulation [J]. J. Electron. Mater. , 2023 , 52 ( 5 ): 3205 - 3218 . doi: 10.1007/s11664-023-10284-2 http://dx.doi.org/10.1007/s11664-023-10284-2
QIN Z W , ZHOU H , LI S T , et al . CsPbI 3 based all-inorganic perovskite solar cells: further performance enhancement of the electron transport layer-free structure from device simulation [J]. Adv. Theory Simul. , 2023 , 6 ( 8 ): 2200805 . doi: 10.1002/adts.202200805 http://dx.doi.org/10.1002/adts.202200805
HUANG Y , YIN W J , HE Y . Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI 3 [J]. J. Phys. Chem. C , 2018 , 122 ( 2 ): 1345 - 1350 . doi: 10.1021/acs.jpcc.7b10045 http://dx.doi.org/10.1021/acs.jpcc.7b10045
BURGELMAN M , NOLLET P , DEGRAVE S . Modelling polycrystalline semiconductor solar cells [J]. Thin Solid Films , 2000 , 361-362 : 527 - 532 . doi: 10.1016/s0040-6090(99)00825-1 http://dx.doi.org/10.1016/s0040-6090(99)00825-1
DENG Q R , LI Y Q , CHEN L A , et al . The effects of electron and hole transport layer with the electrode work function on perovskite solar cells [J]. Mod. Phys. Lett. B , 2016 , 30 ( 27 ): 1650341 . doi: 10.1142/s0217984916503413 http://dx.doi.org/10.1142/s0217984916503413
AZRI F , MEFTAH A , SENGOUGA N , et al . Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell [J]. Sol. Energy , 2019 , 181 : 372 - 378 . doi: 10.1016/j.solener.2019.02.017 http://dx.doi.org/10.1016/j.solener.2019.02.017
DASTIDAR S , LI S M , SMOLIN S Y , et al . Slow electron-hole recombination in lead iodide perovskites does not require a molecular dipole [J]. ACS Energy Lett. , 2017 , 2 ( 10 ): 2239 - 2244 . doi: 10.1021/acsenergylett.7b00606 http://dx.doi.org/10.1021/acsenergylett.7b00606
WANG P Y , ZHANG X W , ZHOU Y Q , et al . Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells [J]. Nat. Commun. , 2018 , 9 ( 1 ): 2225 . doi: 10.1038/s41467-018-04636-4 http://dx.doi.org/10.1038/s41467-018-04636-4
HUTTER E M , SAVENIJE T J . Thermally activated second-order recombination hints toward indirect recombination in fully inorganic CsPbI 3 perovskites [J]. ACS Energy Lett. , 2018 , 3 ( 9 ): 2068 - 2069 . doi: 10.1021/acsenergylett.8b01106 http://dx.doi.org/10.1021/acsenergylett.8b01106
HOSSAIN M I , ALHARBI F H , TABET N . Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells [J]. Sol. Energy , 2015 , 120 : 370 - 380 . doi: 10.1016/j.solener.2015.07.040 http://dx.doi.org/10.1016/j.solener.2015.07.040
KANOUN A A , KANOUN M B , MERAD A E , et al . Toward development of high-performance perovskite solar cells based on CH 3 NH 3 GeI 3 using computational approach [J]. Sol. Energy , 2019 , 182 : 237 - 244 . doi: 10.1016/j.solener.2019.02.041 http://dx.doi.org/10.1016/j.solener.2019.02.041
HU Y Q , BAI F , LIU X B , et al . Bismuth incorporation stabilized α-CsPbI 3 for fully inorganic perovskite solar cells [J]. ACS Energy Lett. , 2017 , 2 ( 10 ): 2219 - 2227 . doi: 10.1021/acsenergylett.7b00508 http://dx.doi.org/10.1021/acsenergylett.7b00508
TAN K , LIN P , WANG G , et al . Controllable design of solid-state perovskite solar cells by SCAPS device simulation [J]. Solid⁃State Electron. , 2016 , 126 : 75 - 80 . doi: 10.1016/j.sse.2016.09.012 http://dx.doi.org/10.1016/j.sse.2016.09.012
HUANG L K , SUN X X , LI C , et al . Electron transport layer-free planar perovskite solar cells: further performance enhancement perspective from device simulation [J]. Sol. Energy Mater. Sol. Cells , 2016 , 157 : 1038 - 1047 . doi: 10.1016/j.solmat.2016.08.025 http://dx.doi.org/10.1016/j.solmat.2016.08.025
张康杰 , 闫伟博 , 辛颢 . 苯乙胺钝化钙钛矿埋底界面提高太阳能电池性能 [J]. 发光学报 , 2023 , 44 ( 9 ): 1636 - 1643 .
ZHANG K J , YAN W B , XIN H . Passivation of perovskite buried-interface using phenethylamine for enhanced solar cell performance [J]. Chin. J. Lumin. , 2023 , 44 ( 9 ): 1636 - 1643 . (in Chinese)
邹宇 , 李昭 , 陈衡慧 , 等 . NaTFSI界面修饰对平面TiO 2 基钙钛矿太阳能电池的影响 [J]. 发光学报 , 2021 , 42 ( 5 ): 682 - 690 . doi: 10.37188/cjl.20210045 http://dx.doi.org/10.37188/cjl.20210045
ZOU Y , LI Z , CHEN H H , et al . Effect of interfacial modification for TiO 2 -based planar perovskite solar cells using NaTFSI [J]. Chin. J. Lumin. , 2021 , 42 ( 5 ): 682 - 690 . (in Chinese) . doi: 10.37188/cjl.20210045 http://dx.doi.org/10.37188/cjl.20210045
GAO Z W , WANG Y , CHOY W C H . Buried interface modification in perovskite solar cells: a materials perspective [J]. Adv. Energy Mater. , 2022 , 12 ( 20 ): 2104030 . doi: 10.1002/aenm.202104030 http://dx.doi.org/10.1002/aenm.202104030
ZHANG C C , YUAN S , LOU Y H , et al . Perovskite films with reduced interfacial strains via a molecular-level flexible interlayer for photovoltaic application [J]. Adv. Mater. , 2020 , 32 ( 38 ): 2001479 . doi: 10.1002/adma.202001479 http://dx.doi.org/10.1002/adma.202001479
CHEN B , CHEN H , HOU Y , et al . Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers [J]. Adv. Mater. , 2021 , 33 ( 41 ): 2103394 . doi: 10.1002/adma.202103394 http://dx.doi.org/10.1002/adma.202103394
ZHENG Z H , LI F M , GONG J , et al . Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22% [J]. Adv. Mater. , 2022 , 34 ( 21 ): 2109879 . doi: 10.1002/adma.202109879 http://dx.doi.org/10.1002/adma.202109879
0
浏览量
419
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构